Infinite-dimensional Bayesian approach for inverse scattering problems of a fractional Helmholtz equation

In this paper, we focus on a new wave equation described wave propagation in the attenuation medium. In the first part of this paper, based on the time-domain space fractional wave equation, we formulate the frequency-domain equation named as fractional Helmholtz equation. According to the physical interpretations, this new model could be divided into two separate models: loss-dominated model and dispersion-dominated model. For the loss-dominated model (it is an integer- and fractional-order mixed elliptic equation), a well-posedness theory has been established and the Lipschitz continuity of the scattering field with respect to the scatterer has also been established.Because the complexity of the dispersion-dominated model (it is an integer- and fractional-order mixed elliptic system), we only provide a well-posedness result for sufficiently small wavenumber. In the second part of this paper, we generalize the Bayesian inverse theory in infinite-dimension to allow a part of the noise depends on the target function (the function needs to be estimated). Then, we prove that the estimated function tends to be the true function if both the model reduction error and the white noise vanish. At last, our theory has been applied to the loss-dominated model with absorbing boundary condition.

[1]  I. Štekl,et al.  Accurate viscoelastic modeling by frequency‐domain finite differences using rotated operators , 1998 .

[2]  Zhi-Ming Ma,et al.  Reflected Symmetric α-Stable Processes and Regional Fractional Laplacian , 2006 .

[3]  José M. Carcione,et al.  Theory and modelling of constant-Q P- and S-waves using fractional spatial derivatives , 2014 .

[4]  S. Lasanen,et al.  Measurements and infinite‐dimensional statistical inverse theory , 2007 .

[5]  Sari Lasanen,et al.  Non-Gaussian statistical inverse problems. Part I: Posterior distributions , 2012 .

[6]  T. Kurtz,et al.  Stochastic equations in infinite dimensions , 2006 .

[7]  Joel Franklin,et al.  Well-posed stochastic extensions of ill-posed linear problems☆ , 1970 .

[8]  R. Danchin,et al.  Fourier Analysis and Nonlinear Partial Differential Equations , 2011 .

[9]  Jari P. Kaipio,et al.  Bayesian approximation error approach in full-wave ultrasound tomography , 2014, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[10]  L. Xiaojun A NOTE ON FRACTIONAL ORDER POINCARÉ’S INEQUALITIES , 2012 .

[11]  Robert G. Clapp,et al.  Q-model building using one-way wave-equation migration Q analysis — Part 1: Theory and synthetic test , 2018 .

[12]  J. Nédélec Acoustic and Electromagnetic Equations : Integral Representations for Harmonic Problems , 2001 .

[13]  G. Prato An Introduction to Infinite-Dimensional Analysis , 2006 .

[14]  A. M. Stuart,et al.  Sparse deterministic approximation of Bayesian inverse problems , 2011, 1103.4522.

[15]  E. Valdinoci,et al.  Hitchhiker's guide to the fractional Sobolev spaces , 2011, 1104.4345.

[16]  Andrew M. Stuart,et al.  Inverse problems: A Bayesian perspective , 2010, Acta Numerica.

[17]  Tieyuan Zhu,et al.  Time-reverse modelling of acoustic wave propagation in attenuating media , 2013 .

[18]  M. Kwasnicki,et al.  Ten equivalent definitions of the fractional laplace operator , 2015, 1507.07356.

[19]  José M. Carcione,et al.  Theory and modeling of constant-Q P- and S-waves using fractional time derivatives , 2009 .

[20]  I. Podlubny Fractional differential equations , 1998 .

[21]  Nicolas Garcia Trillos,et al.  The Bayesian formulation and well-posedness of fractional elliptic inverse problems , 2016, 1611.05475.

[22]  A. Stuart,et al.  MAP estimators and their consistency in Bayesian nonparametric inverse problems , 2013, 1303.4795.

[23]  Mahamadi Warma,et al.  The Fractional Relative Capacity and the Fractional Laplacian with Neumann and Robin Boundary Conditions on Open Sets , 2015 .

[24]  Qing-Yang Guan,et al.  Integration by Parts Formula for Regional Fractional Laplacian , 2006 .

[25]  Jinghuai Gao,et al.  Bayesian approach to inverse problems for functions with a variable-index Besov prior , 2015, 1508.05680.

[26]  G. Bao,et al.  Inverse medium scattering for the Helmholtz equation at fixed frequency , 2005 .

[27]  Gang Bao,et al.  Regularity and Stability for the Scattering Map of a Linearized Inverse Medium Problem , 2000 .

[28]  E. Somersalo,et al.  Statistical and computational inverse problems , 2004 .

[29]  Junshan Lin,et al.  Inverse scattering problems with multi-frequencies , 2015 .

[30]  Sari Lasanen,et al.  Posterior convergence for approximated unknowns in non-Gaussian statistical inverse problems , 2011, 1112.0906.

[31]  P. R. Stinga,et al.  Fractional elliptic equations, Caccioppoli estimates and regularity , 2014, 1409.7721.

[32]  Andrew M. Stuart,et al.  Approximation of Bayesian Inverse Problems for PDEs , 2009, SIAM J. Numer. Anal..

[33]  James C. Robinson,et al.  Bayesian inverse problems for functions and applications to fluid mechanics , 2009 .

[34]  Jigen Peng,et al.  A novel characteristic of solution operator for the fractional abstract Cauchy problem , 2012 .

[35]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[36]  Martin Burger,et al.  Maximum a posteriori probability estimates in infinite-dimensional Bayesian inverse problems , 2014, 1412.5816.

[37]  G. McMechan,et al.  Multifrequency viscoacoustic modeling and inversion , 1996 .

[38]  Xavier Ros-Oton,et al.  The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary , 2012, 1207.5985.

[39]  J. Dvorkin,et al.  Modeling attenuation in reservoir and nonreservoir rock , 2006 .

[40]  A. Stuart,et al.  Sampling the posterior: An approach to non-Gaussian data assimilation , 2007 .

[41]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .

[42]  A. Stuart,et al.  The Bayesian Approach to Inverse Problems , 2013, 1302.6989.

[43]  Andrew M. Stuart,et al.  Iterative updating of model error for Bayesian inversion , 2017, 1707.04246.

[44]  Einar Kjartansson,et al.  Constant Q-wave propagation and attenuation , 1979 .

[45]  H. Triebel Theory Of Function Spaces , 1983 .

[46]  L. Caffarelli,et al.  An Extension Problem Related to the Fractional Laplacian , 2006, math/0608640.

[47]  Zhi-Ming Ma,et al.  BOUNDARY PROBLEMS FOR FRACTIONAL LAPLACIANS , 2005 .

[48]  T. Hohage,et al.  Consistency and rates of convergence of nonlinear Tikhonov regularization with random noise , 2004 .

[49]  Yanzhi Zhang,et al.  A comparative study on nonlocal diffusion operators related to the fractional Laplacian , 2017, Discrete & Continuous Dynamical Systems - B.

[50]  Bo Zhang,et al.  The Factorization Method for Reconstructing a Penetrable Obstacle with Unknown Buried Objects , 2013, SIAM J. Appl. Math..

[51]  Tieyuan Zhu,et al.  Modeling acoustic wave propagation in heterogeneous attenuating media using decoupled fractional Laplacians , 2014 .

[52]  Shui-Nee Chow,et al.  Numerical solution of an inverse medium scattering problem with a stochastic source , 2010 .

[53]  Elias M. Stein,et al.  Unique continuation and absence of positive eigenvalues for Schrodinger operators , 1985 .

[54]  Andrew M. Stuart,et al.  MAP estimators for piecewise continuous inversion , 2015, 1509.03136.

[55]  José M. Carcione,et al.  Time-domain Modeling of Constant-Q Seismic Waves Using Fractional Derivatives , 2002 .

[56]  Tanja Tarvainen,et al.  MARGINALIZATION OF UNINTERESTING DISTRIBUTED PARAMETERS IN INVERSE PROBLEMS-APPLICATION TO DIFFUSE OPTICAL TOMOGRAPHY , 2011 .

[57]  Interior Regularity for Regional Fractional Laplacian , 2015 .