Phase transitions in spin systems: uniqueness, reconstruction and mixing time

[1]  E. Ising Beitrag zur Theorie des Ferromagnetismus , 1925 .

[2]  A. Tarski A Decision Method for Elementary Algebra and Geometry , 2023 .

[3]  D. S. Gaunt,et al.  Hard‐Sphere Lattice Gases. I. Plane‐Square Lattice , 1965 .

[4]  R. Dobrushin The problem of uniqueness of a gibbsian random field and the problem of phase transitions , 1968 .

[5]  C. Preston Gibbs States on Countable Sets , 1974 .

[6]  S. K. Tsang,et al.  Hard-square lattice gas , 1980 .

[7]  D. Freedman The General Case , 2022, Frameworks, Tensegrities, and Symmetry.

[8]  D. Aldous Random walks on finite groups and rapidly mixing markov chains , 1983 .

[9]  George E. Collins,et al.  Cylindrical Algebraic Decomposition I: The Basic Algorithm , 1984, SIAM J. Comput..

[10]  Leslie G. Valiant,et al.  Random Generation of Combinatorial Structures from a Uniform Distribution , 1986, Theor. Comput. Sci..

[11]  Dan Constantin Radulescu,et al.  The Dobrushin-Shlosman phase uniqueness criterion and applications to hard squares , 1987 .

[12]  A. Sokal,et al.  Bounds on the ² spectrum for Markov chains and Markov processes: a generalization of Cheeger’s inequality , 1988 .

[13]  Hans-Otto Georgii,et al.  Gibbs Measures and Phase Transitions , 1988 .

[14]  Mark Jerrum,et al.  Approximate Counting, Uniform Generation and Rapidly Mixing Markov Chains , 1987, International Workshop on Graph-Theoretic Concepts in Computer Science.

[15]  Sven Erick Alm Upper Bounds for the Connective Constant of Self-Avoiding Walks , 1993, Combinatorics, Probability and Computing.

[16]  C. Robinson Dynamical Systems: Stability, Symbolic Dynamics, and Chaos , 1994 .

[17]  F. Martinelli,et al.  Approach to equilibrium of Glauber dynamics in the one phase region , 1994 .

[18]  J. Berg,et al.  Percolation and the hard-core lattice gas model , 1994 .

[19]  F. Martinelli,et al.  Approach to equilibrium of Glauber dynamics in the one phase region , 1994 .

[20]  J. Berg,et al.  A new lower bound for the critical probability of site percolation on the square lattice , 1996 .

[21]  Mark Jerrum,et al.  A Very Simple Algorithm for Estimating the Number of k-Colorings of a Low-Degree Graph , 1995, Random Struct. Algorithms.

[22]  J. Lebowitz,et al.  A computer-assisted proof of uniqueness of phase for the hard-square lattice gas model in two dimensions , 1997 .

[23]  Devdatt P. Dubhashi,et al.  Balls and bins: A study in negative dependence , 1996, Random Struct. Algorithms.

[24]  Olle Häggström,et al.  Nonmonotonic Behavior in Hard-Core and Widom–Rowlinson Models , 1999 .

[25]  F. Martinelli Lectures on Glauber dynamics for discrete spin models , 1999 .

[26]  Eric Vigoda Improved bounds for sampling colorings , 2000 .

[27]  André Pönitz,et al.  Improved Upper Bounds for Self-Avoiding Walks in ${\bf Z}^{d}$ , 2000 .

[28]  M. Ledoux The concentration of measure phenomenon , 2001 .

[29]  Elchanan Mossel Reconstruction on Trees: Beating the Second Eigenvalue , 2001 .

[30]  Elchanan Mossel,et al.  Glauber dynamics on trees and hyperbolic graphs , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[31]  J. Jonasson Uniqueness of uniform random colorings of regular trees , 2002 .

[32]  Fabio Martinelli,et al.  The Ising model on trees: boundary conditions and mixing time , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[33]  M. Jerrum Counting, Sampling and Integrating: Algorithms and Complexity , 2003 .

[34]  Martin E. Dyer,et al.  Randomly coloring graphs with lower bounds on girth and maximum degree , 2003, Random Struct. Algorithms.

[35]  L. A. Goldberg,et al.  Random sampling of 3-colorings in Z 2 , 2004 .

[36]  M. Dyer,et al.  Mixing in time and space for lattice spin systems: A combinatorial view , 2002, International Workshop Randomization and Approximation Techniques in Computer Science.

[37]  Leslie Ann Goldberg,et al.  Strong spatial mixing for lattice graphs with fewer colours , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[38]  Randomly Coloring Constant Degree Graphs , 2004, FOCS.

[39]  Fabio Martinelli,et al.  Fast mixing for independent sets, colorings, and other models on trees , 2004, SODA '04.

[40]  Thomas P. Hayes,et al.  Coupling with the stationary distribution and improved sampling for colorings and independent sets , 2005, SODA '05.

[41]  Eli Upfal,et al.  Probability and Computing: Randomized Algorithms and Probabilistic Analysis , 2005 .

[42]  Dana Randall,et al.  Slow mixing of glauber dynamics via topological obstructions , 2006, SODA '06.

[43]  L. A. Goldberg,et al.  Markov chain comparison , 2004, math/0410331.

[44]  Dror Weitz,et al.  Counting independent sets up to the tree threshold , 2006, STOC '06.

[45]  Andrea Montanari,et al.  Reconstruction for Models on Random Graphs , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[46]  Thomas P. Hayes,et al.  Randomly coloring planar graphs with fewer colors than the maximum degree , 2007, STOC '07.

[47]  Elizabeth L. Wilmer,et al.  Markov Chains and Mixing Times , 2008 .

[48]  Amin Coja-Oghlan,et al.  Algorithmic Barriers from Phase Transitions , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[49]  Allan Sly,et al.  Communications in Mathematical Physics Reconstruction of Random Colourings , 2009 .

[50]  L. A. Goldberg,et al.  The mixing time of Glauber dynamics for coloring regular trees , 2008 .

[51]  Nayantara Bhatnagar,et al.  Reconstruction Threshold for the Hardcore Model , 2010, APPROX-RANDOM.

[52]  H. Duminil-Copin,et al.  The self-dual point of the two-dimensional random-cluster model is critical for q ≥ 1 , 2010, Probability Theory and Related Fields.

[53]  Allan Sly,et al.  Computational Transition at the Uniqueness Threshold , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[54]  Y. Peres,et al.  Mixing Time of Critical Ising Model on Trees is Polynomial in the Height , 2009, 0901.4152.

[55]  Michael Molloy,et al.  The Glauber Dynamics for Colorings of Bounded Degree Trees , 2011, SIAM J. Discret. Math..

[56]  Y. Peres,et al.  Can Extra Updates Delay Mixing? , 2011, 1112.0603.

[57]  Andrea Montanari,et al.  Reconstruction and Clustering in Random Constraint Satisfaction Problems , 2011, SIAM J. Discret. Math..

[58]  Eric Vigoda,et al.  Phase transition for Glauber dynamics for independent sets on regular trees , 2011, SODA '11.

[59]  Eric Vigoda,et al.  Reconstruction for Colorings on Trees , 2007, SIAM J. Discret. Math..

[60]  Allan Sly,et al.  The Computational Hardness of Counting in Two-Spin Models on d-Regular Graphs , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[61]  Phase transition for the mixing time of the Glauber dynamics for coloring regular trees , 2009, 0908.2665.

[62]  Piyush Srivastava,et al.  Approximation Algorithms for Two-State Anti-Ferromagnetic Spin Systems on Bounded Degree Graphs , 2011, Journal of Statistical Physics.

[63]  Jinwoo Shin,et al.  Improved mixing condition on the grid for counting and sampling independent sets , 2013 .

[64]  Dana Randall,et al.  Phase Coexistence and Slow Mixing for the Hard-Core Model on ℤ2 , 2012, APPROX-RANDOM.

[65]  Elchanan Mossel,et al.  Exact thresholds for Ising–Gibbs samplers on general graphs , 2009, The Annals of Probability.

[66]  F. Cucker,et al.  Real Polynomial Systems , 2013 .