The clique-separator graph for chordal graphs

We present a new representation of a chordal graph called the clique-separator graph, whose nodes are the maximal cliques and minimal vertex separators of the graph. We present structural properties of the clique-separator graph and additional properties when the chordal graph is an interval graph, proper interval graph, or split graph. We also characterize proper interval graphs and split graphs in terms of the clique-separator graph. We present an algorithm that constructs the clique-separator graph of a chordal graph in O(n^3) time and of an interval graph in O(n^2) time, where n is the number of vertices in the graph.

[1]  David S. Johnson The NP-Completeness Column: An Ongoing Guide , 1986, J. Algorithms.

[2]  M. Golumbic Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57) , 2004 .

[3]  Yukio Shibata,et al.  On the tree representation of chordal graphs , 1988, J. Graph Theory.

[4]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[5]  Stephan Olariu,et al.  The ultimate interval graph recognition algorithm? , 1998, SODA '98.

[6]  J. G. Lewis,et al.  A fast algorithm for reordering sparse matrices for parallel factorization , 1989 .

[7]  James R. Walter,et al.  Representations of chordal graphs as subtrees of a tree , 1978, J. Graph Theory.

[8]  N. Sloane,et al.  Proof Techniques in Graph Theory , 1970 .

[9]  Peter L. Hammer,et al.  Difference graphs , 1990, Discret. Appl. Math..

[10]  F. Gavril The intersection graphs of subtrees in tree are exactly the chordal graphs , 1974 .

[11]  Michel Habib,et al.  Chordal Graphs and Their Clique Graphs , 1995, WG.

[12]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[13]  Robert E. Tarjan,et al.  Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs , 1984, SIAM J. Comput..

[14]  Kellogg S. Booth,et al.  Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..

[15]  G. Dirac On rigid circuit graphs , 1961 .

[16]  Ryuhei Uehara,et al.  Laminar Structure of Ptolemaic Graphs and Its Applications , 2005, ISAAC.

[17]  Peter Buneman,et al.  A characterisation of rigid circuit graphs , 1974, Discret. Math..

[18]  Louis Ibarra,et al.  A Fully Dynamic Graph Algorithm for Recognizing Interval Graphs , 2010, Algorithmica.

[19]  Louis Ibarra,et al.  A Fully Dynamic Graph Algorithm for Recognizing Proper Interval Graphs , 2009, WALCOM.

[20]  Clyde L. Monma,et al.  Intersection graphs of paths in a tree , 1986, J. Comb. Theory, Ser. B.

[21]  Roded Sharan,et al.  A Fully Dynamic Algorithm for Recognizing and Representing Proper Interval Graphs , 2001, SIAM J. Comput..

[22]  Richard C. T. Lee,et al.  Counting Clique Trees and Computing Perfect Elimination Schemes in Parallel , 1989, Inf. Process. Lett..

[23]  Russell Merris,et al.  Split graphs , 2003, Eur. J. Comb..

[24]  D. R. Fulkerson,et al.  Incidence matrices and interval graphs , 1965 .

[25]  Philip A. Bernstein,et al.  Power of Natural Semijoins , 1981, SIAM J. Comput..

[26]  Michael E. Lundquist Zero Patterns, Chordal Graphs and Matrix Completions , 1990 .

[27]  F. McMorris,et al.  Topics in Intersection Graph Theory , 1987 .

[28]  B. Peyton,et al.  An Introduction to Chordal Graphs and Clique Trees , 1993 .