Mechanistic study on the metallocene-based tandem catalytic coordinative chain transfer polymerization for the synthesis of highly branched polyolefins

[1]  Giuseppe Leone,et al.  Polyolefin thermoplastic elastomers from polymerization catalysis: Advantages, pitfalls and future challenges , 2020 .

[2]  T. Karjala,et al.  Synthesis of Chain Shuttling Organometallic Compounds Capable of Producing Triblock Polyolefins , 2020 .

[3]  A. Vantomme,et al.  Long-Chain Branched Polyethylene via Coordinative Tandem Insertion and Chain-Transfer Polymerization Using rac-{EBTHI}ZrCl2/MAO/Al–alkenyl Combinations: An Experimental and Theoretical Study , 2020 .

[4]  F. Sharif,et al.  Control over Branching Topology by Introducing a Dual Catalytic System in Coordinative Chain Transfer Polymerization of Olefins , 2020 .

[5]  Hyun Ju Lee,et al.  Synthesis of Long-Chain Branched Polyolefins by Coordinative Chain Transfer Polymerization , 2019 .

[6]  M. Mohammadi,et al.  Interplay of reversible chain transfer and comonomer incorporation reactions in coordination copolymerization of ethylene/1–hexene , 2019 .

[7]  R. Kempe,et al.  Synthesis of Linear α-Olefin Distributions with Flexible Mean Molecular Weight by a Ti-Al-Ni Catalyst System , 2018, Organometallics.

[8]  S. Norsic,et al.  Coordinative chain transfer copolymerization of ethylene and styrene using an ansa-bis(fluorenyl) neodymium complex and dialkylmagnesium , 2018 .

[9]  Mostafa Ahmadi,et al.  Synthesis and Characterization of Isotactic Poly(1-hexene)/Branched Polyethylene Multiblock Copolymer via Chain Shuttling Polymerization Technique , 2018 .

[10]  Mostafa Ahmadi,et al.  Structural analysis of linear/branched ethylene block copolymers , 2018 .

[11]  Mostafa Ahmadi,et al.  New olefin block copolymers of ethylene/1-hexene synthesized by iron and zirconocene catalysts in the presence of ZnEt2 , 2018, Journal of Thermal Analysis and Calorimetry.

[12]  T. Dietel,et al.  A broadly tunable synthesis of linear α-olefins , 2017, Nature Communications.

[13]  C. Hu,et al.  Structural Characterization of β-Agostic Bonds in Pd-Catalyzed Polymerization , 2017 .

[14]  M. Abbasi,et al.  Theoretical correlation of linear and non-linear rheological symptoms of long-chain branching in polyethylenes irradiated by electron beam at relatively low doses , 2017, Rheologica Acta.

[15]  Connie C. Lu,et al.  Metal-Metal Bonds: From Fundamentals to Applications. , 2017, Inorganic chemistry.

[16]  Bing Yuan,et al.  In situ ozonolysis of polypropylene during extrusion to produce long-chain branches with the aid of TMPTA , 2017 .

[17]  F. Stadler,et al.  Complex interplay of short- and long-chain branching on thermal and rheological properties of ethylene/α-olefin copolymers made by metallocene catalysts with oscillating ligand structure , 2017 .

[18]  Wenqi Guo,et al.  Kinetics and mechanism of metallocene‐catalyzed olefin polymerization: Comparison of ethylene, propylene homopolymerizations, and their copolymerization , 2017 .

[19]  R. Duchateau,et al.  Preparation of Ethylene/1-Hexene Copolymers from Ethylene Using a Fully Silica-Supported Tandem Catalyst System , 2016 .

[20]  Lihua Guo,et al.  Palladium and Nickel Catalyzed Chain Walking Olefin Polymerization and Copolymerization , 2016 .

[21]  M. Saeb,et al.  A Perspective on Modeling and Characterization of Transformations in the Blocky Nature of Olefin Block Copolymers , 2015 .

[22]  J. Shabaker,et al.  Iron-Catalyzed Chain Growth of Ethylene: In Situ Regeneration of ZnEt2 by Tandem Catalysis , 2015 .

[23]  H. Olivier-Bourbigou,et al.  Iron-Catalyzed Oligomerization and Polymerization Reactions , 2015 .

[24]  M. Saeb,et al.  A Detailed Model on Kinetics and Microstructure Evolution during Copolymerization of Ethylene and 1-Octene: From Coordinative Chain Transfer to Chain Shuttling Polymerization , 2014 .

[25]  Yousef Mohammadi,et al.  The evolutionary development of chain microstructure during tandem polymerization of ethylene: A Monte Carlo simulation study , 2014 .

[26]  C. Robert,et al.  Tandem catalysis: a new approach to polymers. , 2013, Chemical Society reviews.

[27]  Connie C. Lu,et al.  Systematic variation of metal-metal bond order in metal-chromium complexes. , 2013, Journal of the American Chemical Society.

[28]  N. Mankad,et al.  Heterobimetallic complexes with polar, unsupported Cu-Fe and Zn-Fe bonds stabilized by N-heterocyclic carbenes , 2013 .

[29]  F. Stadler,et al.  Revisiting the long-chain branch formation mechanism in metallocene catalyzed polyethylenes , 2013 .

[30]  P. Zinck,et al.  Coordinative chain transfer polymerization. , 2013, Chemical reviews.

[31]  F. Stadler,et al.  Correlations between the Characteristic Rheological Quantities and Molecular Structure of Long-Chain Branched Metallocene Catalyzed Polyethylenes , 2011 .

[32]  Arsia Takeh,et al.  Analytical Rheology of Metallocene-Catalyzed Polyethylenes , 2011 .

[33]  D. McGuinness Olefin oligomerization via metallacycles: dimerization, trimerization, tetramerization, and beyond. , 2011, Chemical reviews.

[34]  R. Keunings,et al.  Time Marching Algorithm for Predicting the Linear Rheology of Monodisperse Comb Polymer Melts , 2011 .

[35]  S. Shanbhag Analytical rheology of branched polymer melts: Identifying and resolving degenerate structures , 2011 .

[36]  D. Mathis,et al.  Narrowly Distributed Polyethylene via Reversible Chain Transfer to Aluminum by a Sterically Hindered Zirconocene/MAO , 2010 .

[37]  P. Hustad,et al.  An Exploration of the Effects of Reversibility in Chain Transfer to Metal in Olefin Polymerization , 2008 .

[38]  P. Hustad,et al.  Continuous Production of Ethylene-Based Diblock Copolymers Using Coordinative Chain Transfer Polymerization , 2007 .

[39]  Malcolm L. H. Green,et al.  Agostic interactions in transition metal compounds , 2007, Proceedings of the National Academy of Sciences.

[40]  T. Strassner,et al.  The mechanism of ethylene polymerization by nickel salicylaldiminato catalysts – Agostic interactions and their kinetic isotope effects , 2006 .

[41]  R. Keunings,et al.  A general methodology to predict the linear rheology of branched polymers , 2006 .

[42]  P. Hustad,et al.  Catalytic Production of Olefin Block Copolymers via Chain Shuttling Polymerization , 2006, Science.

[43]  W. Kaminsky,et al.  Low density polyethylene by tandem catalysis with single site Ti(IV)/Co(II) catalysts , 2006 .

[44]  Laziz Bouzidi,et al.  Use of first and second derivatives to accurately determine key parameters of DSC thermographs in lipid crystallization studies , 2005 .

[45]  Wei Wang,et al.  Strong influences of polymerization temperature on ethylene/1-hexene copolymerization catalyzed by (2-PhInd)(2)ZrCl(2)/methyl aluminoxane. , 2005, Journal of Zhejiang University. Science. B.

[46]  G. Britovsek,et al.  Polyethylene chain growth on zinc catalyzed by olefin polymerization catalysts: a comparative investigation of highly active catalyst systems across the transition series. , 2005, Journal of the American Chemical Society.

[47]  Shiping Zhu,et al.  Direct synthesis of linear low‐density polyethylene of ethylene/1‐hexene from ethylene with a tandem catalytic system in a single reactor , 2004 .

[48]  G. Britovsek,et al.  Iron catalyzed polyethylene chain growth on zinc: a study of the factors delineating chain transfer versus catalyzed chain growth in zinc and related metal alkyl systems. , 2004, Journal of the American Chemical Society.

[49]  G. Britovsek,et al.  Iron‐Catalyzed Polyethylene Chain Growth on Zinc: Linear α‐Olefins with a Poisson Distribution , 2002 .

[50]  E. Rytter,et al.  Possible effects on the polyethene chain structure of trimethylaluminum coordination to zirconocene catalysts , 2001 .

[51]  G. Bazan,et al.  Synthesis of Branched Polyethylene by Tandem Catalysis , 2001 .

[52]  L. Gade,et al.  Highly Polar Metal-Metal Bonds in "Early-Late" Heterodimetallic Complexes. , 2000, Angewandte Chemie.

[53]  McLain,et al.  Chain walking: A new strategy to control polymer topology , 1999, Science.

[54]  Xin Ma,et al.  Aluminum-nickel bonded intermediates in the Ziegler Nickel Effect: mechanistic support from catalyzed hydroalumination and carbalumination reactions☆ , 1997 .

[55]  Maurice Brookhart,et al.  New Pd(II)- and Ni(II)-Based Catalysts for Polymerization of Ethylene and .alpha.-Olefins , 1995 .

[56]  C. Friedrich,et al.  Generalized Cole-Cole behavior and its rheological relevance , 1992 .

[57]  G. Wilke,et al.  The “Nickel Effect” , 1973 .

[58]  Takakazu Yamamoto,et al.  Activation of Iron-Alkyl Bonds in Dialkylbis (dipyridyl) iron(II) by Interaction with Olefins , 1972 .

[59]  Taro Saito,et al.  Diethylbis(bipyridine)iron. Butadiene cyclodimerization catalyst , 1968 .