Transport in inhomogeneous quantum critical fluids and in the Dirac fluid in graphene

We develop a general hydrodynamic framework for computing direct current thermal and electric transport in a strongly interacting finite temperature quantum system near a Lorentz-invariant quantum critical point. Our framework is non-perturbative in the strength of long wavelength fluctuations in the background charge density of the electronic fluid, and requires the rate of electron-electron scattering to be faster than the rate of electron-impurity scattering. We use this formalism to compute transport coefficients in the Dirac fluid in clean samples of graphene near the charge neutrality point, and find results insensitive to long range Coulomb interactions. Numerical results are compared to recent experimental data on thermal and electrical conductivity in the Dirac fluid in graphene and substantially improved quantitative agreement over existing hydrodynamic theories is found. We comment on the interplay between the Dirac fluid and acoustic and optical phonons, and qualitatively explain experimentally observed effects. Our work paves the way for quantitative contact between experimentally realized condensed matter systems and the wide body of high energy inspired theories on transport in interacting many-body quantum systems.

[1]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[2]  P. Kim,et al.  Enhanced Thermoelectric Power in Graphene: Violation of the Mott Relation by Inelastic Scattering. , 2016, Physical review letters.

[3]  B. Schmidt,et al.  Evidence for hydrodynamic electron flow in PdCoO2 , 2015, Science.

[4]  P. Kim,et al.  Observation of the Dirac fluid and the breakdown of the Wiedemann-Franz law in graphene , 2015, Science.

[5]  K. Novoselov,et al.  Negative local resistance caused by viscous electron backflow in graphene , 2015, Science.

[6]  L. Levitov,et al.  Electron viscosity, current vortices and negative nonlocal resistance in graphene , 2015, Nature Physics.

[7]  SUPARNA DUTTASINHA,et al.  Nonlocal transport and the hydrodynamic shear viscosity in graphene , 2015, 1508.00363.

[8]  G. Vignale,et al.  Violation of the Wiedemann-Franz Law in Hydrodynamic Electron Liquids. , 2015, Physical review letters.

[9]  A. Lucas,et al.  Absence of Disorder-Driven Metal-Insulator Transitions in Simple Holographic Models. , 2015, Physical review letters.

[10]  A. Lucas Hydrodynamic transport in strongly coupled disordered quantum field theories , 2015, 1506.02662.

[11]  J. Gauntlett,et al.  Navier-Stokes on Black Hole Horizons and DC Thermoelectric Conductivity , 2015 .

[12]  J. Gauntlett,et al.  Navier-Stokes equations on black hole horizons and DC thermoelectric conductivity. , 2015, 1506.01360.

[13]  Mike Blake Momentum relaxation from the fluid/gravity correspondence , 2015, 1505.06992.

[14]  B. Goutéraux,et al.  Dissecting holographic conductivities , 2015, 1505.05092.

[15]  A. Lucas,et al.  Memory matrix theory of magnetotransport in strange metals , 2015, 1502.04704.

[16]  Xianhui Chen Experimental discovery of Weyl semimetal TaAs , 2015, Science China Materials.

[17]  Shuang Jia,et al.  Discovery of a Weyl fermion semimetal and topological Fermi arcs , 2015, Science.

[18]  M. Soljačić,et al.  Experimental observation of Weyl points , 2015, Science.

[19]  A. Lucas Conductivity of a strange metal: from holography to memory functions , 2015, 1501.05656.

[20]  K. Murata,et al.  Significant Enhancement of Electronic Thermal Conductivity of Two-Dimensional Zero-Gap Systems by Bipolar-Diffusion Effect , 2015 .

[21]  P. Kim,et al.  Development of high frequency and wide bandwidth Johnson noise thermometry , 2014, 1411.4596.

[22]  V. Galitski,et al.  Strongly interacting Dirac liquid on the surface of a topological Kondo insulator , 2014, 1404.5640.

[23]  A. Lucas,et al.  Scale-invariant hyperscaling-violating holographic theories and the resistivity of strange metals with random-field disorder , 2014, 1401.7993.

[24]  G. Vignale,et al.  Corbino disk viscometer for 2D quantum electron liquids. , 2014, Physical review letters.

[25]  K. Balasubramanian,et al.  Losing forward momentum holographically , 2013, 1312.4953.

[26]  J. Zaanen,et al.  Holographic duality and the resistivity of strange metals , 2013, 1311.2451.

[27]  K. L. Shepard,et al.  One-Dimensional Electrical Contact to a Two-Dimensional Material , 2013, Science.

[28]  D. Tong,et al.  Holographic lattices give the graviton an effective mass. , 2013, Physical review letters.

[29]  M. D. Shaw,et al.  Measurement of the electronic thermal conductance channels and heat capacity of graphene at low temperature , 2013, 1308.2265.

[30]  Fulvio Parmigiani,et al.  Direct view of hot carrier dynamics in graphene. , 2013, Physical review letters.

[31]  W. Regan,et al.  Charge-carrier screening in single-layer graphene. , 2013, Physical review letters.

[32]  K. Novoselov,et al.  How close can one approach the Dirac point in graphene experimentally? , 2012, Nano letters.

[33]  B. Spivak,et al.  Chiral Anomaly and Classical Negative Magnetoresistance of Weyl Metals , 2012, 1206.1627.

[34]  K. Schwab,et al.  Ultrasensitive and Wide-Bandwidth Thermal Measurements of Graphene at Low Temperatures , 2012, 1202.5737.

[35]  Luyi Yang,et al.  Doppler velocimetry of spin propagation in a two-dimensional electron gas , 2011, Nature Physics.

[36]  S Succi,et al.  Preturbulent regimes in graphene flow. , 2011, Physical review letters.

[37]  Pablo Jarillo-Herrero,et al.  Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. , 2011, Nature materials.

[38]  Pablo Jarillo-Herrero,et al.  STM Spectroscopy of ultra-flat graphene on hexagonal boron nitride , 2011, 1102.2642.

[39]  B. Spivak,et al.  Hydrodynamic description of transport in strongly correlated electron systems. , 2010, Physical review letters.

[40]  P. Kim,et al.  Controlling electron-phonon interactions in graphene at ultrahigh carrier densities. , 2010, Physical review letters.

[41]  H. Bechtel,et al.  Drude Conductivity of Dirac Fermions in Graphene , 2010, 1007.4623.

[42]  J. E. Thomas,et al.  Universal Quantum Viscosity in a Unitary Fermi Gas , 2010, Science.

[43]  Markus Müller,et al.  Graphene: a nearly perfect fluid. , 2009, Physical review letters.

[44]  S. Hartnoll Lectures on holographic methods for condensed matter physics , 2009, 0903.3246.

[45]  Thomas Elsaesser,et al.  Ultrafast carrier dynamics in graphite. , 2009, Physical review letters.

[46]  Michael F. Crommie,et al.  Origin of spatial charge inhomogeneity in graphene , 2009, 0902.4793.

[47]  S. Hayden,et al.  Anomalous Criticality in the Electrical Resistivity of La2–xSrxCuO4 , 2009, Science.

[48]  E. H. Hwang,et al.  Screening-induced temperature-dependent transport in two-dimensional graphene , 2008, 0811.1212.

[49]  I. Aleiner,et al.  Slow imbalance relaxation and thermoelectric transport in graphene , 2008, 0810.4342.

[50]  S. Sarma,et al.  Effective medium theory for disordered two-dimensional graphene , 2008, 0809.1425.

[51]  Markus P. Mueller,et al.  Quantum-critical relativistic magnetotransport in graphene , 2008, 0805.1413.

[52]  M. Luzum,et al.  Conformal relativistic viscous hydrodynamics: Applications to RHIC results at s NN =200 GeV , 2008, 0804.4015.

[53]  D. Goldhaber-Gordon,et al.  Evidence of the role of contacts on the observed electron-hole asymmetry in graphene , 2008, 0804.2040.

[54]  E. Andrei,et al.  Scanning tunneling spectroscopy of graphene on graphite. , 2008, Physical review letters.

[55]  S. Das Sarma,et al.  Ground state of graphene in the presence of random charged impurities. , 2008, Physical review letters.

[56]  Markus P. Mueller,et al.  Quantum Critical Transport in Clean Graphene , 2008, 0802.4289.

[57]  G. Fudenberg,et al.  Ultrahigh electron mobility in suspended graphene , 2008, 0802.2389.

[58]  Markus P. Mueller,et al.  Collective cyclotron motion of the relativistic plasma in graphene , 2008, 0801.2970.

[59]  S. Sarma,et al.  Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene , 2007, 0711.0754.

[60]  D. Sheehy,et al.  Quantum critical scaling in graphene. , 2007, Physical review letters.

[61]  Markus P. Mueller,et al.  Theory of the Nernst effect near quantum phase transitions in condensed matter and in dyonic black holes , 2007, 0706.3215.

[62]  K. Klitzing,et al.  Observation of electron–hole puddles in graphene using a scanning single-electron transistor , 2007, 0705.2180.

[63]  S. Sarma,et al.  A self-consistent theory for graphene transport , 2007, Proceedings of the National Academy of Sciences.

[64]  O. Vafek Anomalous thermodynamics of Coulomb-interacting massless Dirac fermions in two spatial dimensions. , 2007, Physical review letters.

[65]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[66]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[67]  D. Awschalom,et al.  Observation of spin Coulomb drag in a two-dimensional electron gas , 2005, Nature.

[68]  D. Son,et al.  Viscosity in strongly interacting quantum field theories from black hole physics. , 2005, Physical review letters.

[69]  A. Schofield,et al.  Quantum criticality , 2005, Nature.

[70]  H. Eisaki,et al.  Quantum critical behaviour in a high-Tc superconductor , 2003, Nature.

[71]  M. Lavagna Quantum phase transitions , 2001, cond-mat/0102119.

[72]  S. Sachdev,et al.  NONZERO-TEMPERATURE TRANSPORT NEAR QUANTUM CRITICAL POINTS , 1997, cond-mat/9705206.

[73]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[74]  L. Molenkamp,et al.  Hydrodynamic electron flow in high-mobility wires. , 1994, Physical review. B, Condensed matter.

[75]  Holger Bech Nielsen,et al.  The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal , 1983 .

[76]  B. Derrida,et al.  A transfer-matrix approach to random resistor networks , 1982 .

[77]  Scott Kirkpatrick,et al.  Classical Transport in Disordered Media: Scaling and Effective-Medium Theories , 1971 .

[78]  D. Pines,et al.  The theory of quantum liquids , 1968 .

[79]  Leo P. Kadanoff,et al.  Hydrodynamic equations and correlation functions , 1963 .

[80]  M. Polini Negative Local Resistance Due To Viscous Electron Backflow In Graphene , 2015 .

[81]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[82]  R. P. Feynman,et al.  T5 – APPLICATION OF QUANTUM MECHANICS TO LIQUID HELIUM* , 1971 .

[83]  J. Krumhansl,et al.  Thermal conductivity in semiconductors , 1959 .