Substrate-transferred GaAs/AlGaAs crystalline coatings for gravitational-wave detectors

In this Perspective, we summarize the status of technological development for large-area and low-noise substrate-transferred GaAs/AlGaAs (AlGaAs) crystalline coatings for interferometric gravitational-wave (GW) detectors. These topics were originally presented as part of an AlGaAs Workshop held at American University, Washington, DC, from 15 August to 17 August 2022, bringing together members of the GW community from the laser interferometer gravitational-wave observatory (LIGO), Virgo, and KAGRA collaborations, along with scientists from the precision optical metrology community, and industry partners with extensive expertise in the manufacturing of said coatings. AlGaAs-based crystalline coatings present the possibility of GW observatories having significantly greater range than current systems employing ion-beam sputtered mirrors. Given the low thermal noise of AlGaAs at room temperature, GW detectors could realize these significant sensitivity gains while potentially avoiding cryogenic operation. However, the development of large-area AlGaAs coatings presents unique challenges. Herein, we describe recent research and development efforts relevant to crystalline coatings, covering characterization efforts on novel noise processes as well as optical metrology on large-area (∼10 cm diameter) mirrors. We further explore options to expand the maximum coating diameter to 20 cm and beyond, forging a path to produce low-noise mirrors amenable to future GW detector upgrades, while noting the unique requirements and prospective experimental testbeds for these semiconductor-based coatings.

[1]  E. Oelker,et al.  Frequency stability of cryogenic silicon cavities with semiconductor crystalline coatings , 2022, Optica.

[2]  Jieping Ye,et al.  Excess noise in highly reflective crystalline mirror coatings , 2022, 2210.15671.

[3]  N. Aggarwal,et al.  Surpassing the Standard Quantum Limit using an Optical Spring , 2022, 2210.12222.

[4]  D. Follman,et al.  Transmission-dominated mid-infrared supermirrors with finesse exceeding 200 000 , 2022, 2209.09902.

[5]  U. Sterr,et al.  Transportable clock laser system with an instability of 1.6 × 10-16. , 2022, Optics letters.

[6]  M. Vervaeke,et al.  ETpathfinder: a cryogenic testbed for interferometric gravitational-wave detectors , 2022, Classical and Quantum Gravity.

[7]  A. Fricke,et al.  Rack-Mounted Ultrastable Laser System for Sr Lattice Clock Operation , 2022, 2022 Conference on Lasers and Electro-Optics (CLEO).

[8]  A. Fleisher,et al.  Mid-infrared monocrystalline interference coatings with excess optical loss below 10 ppm , 2020, 2009.04721.

[9]  R. Schnabel,et al.  Highly efficient generation of coherent light at 2128  nm via degenerate optical-parametric oscillation. , 2020, Optics letters.

[10]  S. Leavey,et al.  Thickness uniformity measurements and damage threshold tests of large-area GaAs/AlGaAs crystalline coatings for precision interferometry. , 2019, Optics express.

[11]  G. Billingsley,et al.  Fused silica, optics and coatings , 2019, Advanced Interferometric Gravitational-Wave Detectors.

[12]  A. Libson,et al.  Measurement of quantum back action in the audio band at room temperature , 2019, Nature.

[13]  E. Oelker,et al.  Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks , 2019, Nature Photonics.

[14]  E. Oelker,et al.  Optical clock intercomparison with $6\times 10^{-19}$ precision in one hour , 2019, 1902.02741.

[15]  Wei Zhang,et al.  Crystalline optical cavity at 4  K with thermal-noise-limited instability and ultralow drift , 2018, Optica.

[16]  U. Zeimer,et al.  Stress control of tensile-strained In1−xGaxP nanomechanical string resonators , 2018, Applied Physics Letters.

[17]  L. Pinard,et al.  Optical performance of large-area crystalline coatings. , 2018, Optics express.

[18]  T. Legero,et al.  1.5 μm lasers with sub 10 mHz linewidth , 2017, 2017 Conference on Lasers and Electro-Optics (CLEO).

[19]  M. Aspelmeyer,et al.  Direct frequency comb measurement of OD + CO → DOCO kinetics , 2016, Science.

[20]  G. Mansell,et al.  Ultra-low phase noise squeezed vacuum source for gravitational wave detectors , 2016 .

[21]  Jun Ye,et al.  High-performance near- and mid-infrared crystalline coatings , 2016, 1604.00065.

[22]  The LIGO Scientific Collaboration,et al.  GW150914: The Advanced LIGO Detectors in the Era of First Discoveries , 2016, 1602.03838.

[23]  The Ligo Scientific Collaboration,et al.  Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.

[24]  David E. McClelland,et al.  Achieving resonance in the Advanced LIGO gravitational-wave interferometer , 2014 .

[25]  Michael Hillard,et al.  Advanced LIGO two-stage twelve-axis vibration isolation and positioning platform. Part 1: Design and production overview , 2014, 1407.6377.

[26]  M. Aspelmeyer,et al.  Tensile strained $In_{x}Ga_{1-x}P$ membranes for cavity optomechanics , 2014, 1404.0029.

[27]  Wei Zhang,et al.  Tenfold reduction of Brownian noise in high-reflectivity optical coatings , 2013, Nature Photonics.

[28]  Yanbei Chen,et al.  Macroscopic quantum mechanics: theory and experimental concepts of optomechanics , 2013, 1302.1924.

[29]  Garrett D. Cole,et al.  Cavity optomechanics with low-noise crystalline mirrors , 2012, NanoScience + Engineering.

[30]  H. Lück,et al.  Optical layout for a 10 m Fabry–Perot Michelson interferometer with tunable stability , 2011, 1112.1804.

[31]  S. Bose,et al.  Sensitivity studies for third-generation gravitational wave observatories , 2010, 1012.0908.

[32]  Markus Aspelmeyer,et al.  Free-standing AlxGa1−xAs heterostructures by gas-phase etching of germanium , 2010 .

[33]  Achim Peters,et al.  Megahertz monocrystalline optomechanical resonators with minimal dissipation , 2010, 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS).

[34]  Sylvain Gigan,et al.  Monocrystalline AlxGa1−xAs heterostructures for high-reflectivity high-Q micromechanical resonators in the megahertz regime , 2008, 0802.0465.

[35]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[36]  M. Fejer,et al.  Titania-doped tantala/silica coatings for gravitational-wave detection , 2006, gr-qc/0610004.

[37]  Jun Ye,et al.  Contribution of thermal noise to frequency stability of rigid optical cavity via Hertz-linewidth lasers , 2006 .

[38]  David Blair,et al.  Gingin High Optical Power Test Facility , 2006 .

[39]  Kenji Numata,et al.  Thermal-noise limit in the frequency stabilization of lasers with rigid cavities. , 2004, Physical review letters.

[40]  M. Fejer,et al.  Mechanical loss in tantala/silica dielectric mirror coatings , 2003, gr-qc/0302093.

[41]  Christoph Simon,et al.  Towards quantum superpositions of a mirror , 2004 .

[42]  M. Fejer,et al.  Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings , 2001, gr-qc/0109073.

[43]  M. M. Casey,et al.  Performance of the Glasgow 10 m prototype gravitational wave detector operating at λ=1064 nm , 2000 .

[44]  Y. Levin Internal thermal noise in the LIGO test masses: A direct approach , 1997, gr-qc/9707013.

[45]  Peter R. Saulson,et al.  Brownian motion of a mass suspended by an anelastic wire , 1994 .

[46]  P. Saulson,et al.  Thermal noise in mechanical experiments. , 1990, Physical review. D, Particles and fields.

[47]  V. Braginsky,et al.  Systems with Small Dissipation , 1986 .

[48]  Richard F. Greene,et al.  On a Theorem of Irreversible Thermodynamics , 1952 .

[49]  S. Klimenko,et al.  Advanced LIGO , 2014, 1411.4547.

[50]  G. M. Harry,et al.  Optical coatings and thermal noise in precision measurement , 2011 .