Substrate-transferred GaAs/AlGaAs crystalline coatings for gravitational-wave detectors
暂无分享,去创建一个
J. Steinlechner | S. Ballmer | G. Billingsley | P. Fritschel | G. Harry | D. Reitze | A. Gretarsson | S. Penn | G. Truong | T. Legero | U. Sterr | C. Makarem | S. Tanioka | G. Cole | J. Yu | M. Fejer | D. Kedar | S. B. Cataño-Lopez | J. Ye
[1] E. Oelker,et al. Frequency stability of cryogenic silicon cavities with semiconductor crystalline coatings , 2022, Optica.
[2] Jieping Ye,et al. Excess noise in highly reflective crystalline mirror coatings , 2022, 2210.15671.
[3] N. Aggarwal,et al. Surpassing the Standard Quantum Limit using an Optical Spring , 2022, 2210.12222.
[4] D. Follman,et al. Transmission-dominated mid-infrared supermirrors with finesse exceeding 200 000 , 2022, 2209.09902.
[5] U. Sterr,et al. Transportable clock laser system with an instability of 1.6 × 10-16. , 2022, Optics letters.
[6] M. Vervaeke,et al. ETpathfinder: a cryogenic testbed for interferometric gravitational-wave detectors , 2022, Classical and Quantum Gravity.
[7] A. Fricke,et al. Rack-Mounted Ultrastable Laser System for Sr Lattice Clock Operation , 2022, 2022 Conference on Lasers and Electro-Optics (CLEO).
[8] A. Fleisher,et al. Mid-infrared monocrystalline interference coatings with excess optical loss below 10 ppm , 2020, 2009.04721.
[9] R. Schnabel,et al. Highly efficient generation of coherent light at 2128 nm via degenerate optical-parametric oscillation. , 2020, Optics letters.
[10] S. Leavey,et al. Thickness uniformity measurements and damage threshold tests of large-area GaAs/AlGaAs crystalline coatings for precision interferometry. , 2019, Optics express.
[11] G. Billingsley,et al. Fused silica, optics and coatings , 2019, Advanced Interferometric Gravitational-Wave Detectors.
[12] A. Libson,et al. Measurement of quantum back action in the audio band at room temperature , 2019, Nature.
[13] E. Oelker,et al. Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks , 2019, Nature Photonics.
[14] E. Oelker,et al. Optical clock intercomparison with $6\times 10^{-19}$ precision in one hour , 2019, 1902.02741.
[15] Wei Zhang,et al. Crystalline optical cavity at 4 K with thermal-noise-limited instability and ultralow drift , 2018, Optica.
[16] U. Zeimer,et al. Stress control of tensile-strained In1−xGaxP nanomechanical string resonators , 2018, Applied Physics Letters.
[17] L. Pinard,et al. Optical performance of large-area crystalline coatings. , 2018, Optics express.
[18] T. Legero,et al. 1.5 μm lasers with sub 10 mHz linewidth , 2017, 2017 Conference on Lasers and Electro-Optics (CLEO).
[19] M. Aspelmeyer,et al. Direct frequency comb measurement of OD + CO → DOCO kinetics , 2016, Science.
[20] G. Mansell,et al. Ultra-low phase noise squeezed vacuum source for gravitational wave detectors , 2016 .
[21] Jun Ye,et al. High-performance near- and mid-infrared crystalline coatings , 2016, 1604.00065.
[22] The LIGO Scientific Collaboration,et al. GW150914: The Advanced LIGO Detectors in the Era of First Discoveries , 2016, 1602.03838.
[23] The Ligo Scientific Collaboration,et al. Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.
[24] David E. McClelland,et al. Achieving resonance in the Advanced LIGO gravitational-wave interferometer , 2014 .
[25] Michael Hillard,et al. Advanced LIGO two-stage twelve-axis vibration isolation and positioning platform. Part 1: Design and production overview , 2014, 1407.6377.
[26] M. Aspelmeyer,et al. Tensile strained $In_{x}Ga_{1-x}P$ membranes for cavity optomechanics , 2014, 1404.0029.
[27] Wei Zhang,et al. Tenfold reduction of Brownian noise in high-reflectivity optical coatings , 2013, Nature Photonics.
[28] Yanbei Chen,et al. Macroscopic quantum mechanics: theory and experimental concepts of optomechanics , 2013, 1302.1924.
[29] Garrett D. Cole,et al. Cavity optomechanics with low-noise crystalline mirrors , 2012, NanoScience + Engineering.
[30] H. Lück,et al. Optical layout for a 10 m Fabry–Perot Michelson interferometer with tunable stability , 2011, 1112.1804.
[31] S. Bose,et al. Sensitivity studies for third-generation gravitational wave observatories , 2010, 1012.0908.
[32] Markus Aspelmeyer,et al. Free-standing AlxGa1−xAs heterostructures by gas-phase etching of germanium , 2010 .
[33] Achim Peters,et al. Megahertz monocrystalline optomechanical resonators with minimal dissipation , 2010, 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS).
[34] Sylvain Gigan,et al. Monocrystalline AlxGa1−xAs heterostructures for high-reflectivity high-Q micromechanical resonators in the megahertz regime , 2008, 0802.0465.
[35] Kerry Vahala,et al. Cavity opto-mechanics. , 2007, Optics express.
[36] M. Fejer,et al. Titania-doped tantala/silica coatings for gravitational-wave detection , 2006, gr-qc/0610004.
[37] Jun Ye,et al. Contribution of thermal noise to frequency stability of rigid optical cavity via Hertz-linewidth lasers , 2006 .
[38] David Blair,et al. Gingin High Optical Power Test Facility , 2006 .
[39] Kenji Numata,et al. Thermal-noise limit in the frequency stabilization of lasers with rigid cavities. , 2004, Physical review letters.
[40] M. Fejer,et al. Mechanical loss in tantala/silica dielectric mirror coatings , 2003, gr-qc/0302093.
[41] Christoph Simon,et al. Towards quantum superpositions of a mirror , 2004 .
[42] M. Fejer,et al. Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings , 2001, gr-qc/0109073.
[43] M. M. Casey,et al. Performance of the Glasgow 10 m prototype gravitational wave detector operating at λ=1064 nm , 2000 .
[44] Y. Levin. Internal thermal noise in the LIGO test masses: A direct approach , 1997, gr-qc/9707013.
[45] Peter R. Saulson,et al. Brownian motion of a mass suspended by an anelastic wire , 1994 .
[46] P. Saulson,et al. Thermal noise in mechanical experiments. , 1990, Physical review. D, Particles and fields.
[47] V. Braginsky,et al. Systems with Small Dissipation , 1986 .
[48] Richard F. Greene,et al. On a Theorem of Irreversible Thermodynamics , 1952 .
[49] S. Klimenko,et al. Advanced LIGO , 2014, 1411.4547.
[50] G. M. Harry,et al. Optical coatings and thermal noise in precision measurement , 2011 .