A Review of Germanium-Antimony-Telluride Phase Change Materials for Non-Volatile Memories and Optical Modulators

[1]  J. Tominaga,et al.  Crystallization-induced short-range order changes in amorphous GeTe , 2004 .

[2]  C. David Wright,et al.  An optoelectronic framework enabled by low-dimensional phase-change films , 2014, Nature.

[3]  H.-S. Philip Wong,et al.  Phase Change Memory , 2010, Proceedings of the IEEE.

[4]  Richard Soref,et al.  Simulations of Silicon-on-Insulator Channel-Waveguide Electrooptical 2 × 2 Switches and 1 × 1 Modulators Using a ${\bf Ge_2}{\bf Sb_2}{\bf Te_5}$ Self-Holding Layer , 2015, Journal of Lightwave Technology.

[5]  Noboru Yamada,et al.  Phase-Change Optical Disk Having a Nitride Interface Layer , 1998 .

[6]  Byung Joon Choi,et al.  Combined Atomic Layer and Chemical Vapor Deposition, and Selective Growth of Ge2Sb2Te5 Films on TiN/W Contact Plug , 2007 .

[7]  T. Wágner,et al.  Optical properties and phase change transition in Ge2Sb2Te5 flash evaporated thin films studied by temperature dependent spectroscopic ellipsometry , 2008 .

[8]  Young Kook Lee,et al.  Effect of Heating Rate on the Activation Energy for Crystallization of Amorphous Ge2Sb2Te5 Thin Film , 2009 .

[9]  Behrad Gholipour,et al.  An All‐Optical, Non‐volatile, Bidirectional, Phase‐Change Meta‐Switch , 2013, Advanced materials.

[10]  M. Wuttig,et al.  Effects of stoichiometry on the transport properties of crystalline phase-change materials , 2015, Scientific Reports.

[11]  Lei Wang,et al.  Recent Advances on Neuromorphic Systems Using Phase-Change Materials , 2017, Nanoscale Research Letters.

[12]  Songlin Feng,et al.  Direct observation of metastable face-centered cubic Sb2Te3 crystal , 2016, Nano Research.

[13]  T Uruga,et al.  Toward the ultimate limit of phase change in Ge(2)Sb(2)Te(5). , 2010, Nano letters.

[14]  Byung Joon Choi,et al.  Conformal Formation of (GeTe2)(1–x)(Sb2Te3)x Layers by Atomic Layer Deposition for Nanoscale Phase Change Memories , 2012 .

[15]  Y. Jung,et al.  Flexible one diode-one phase change memory array enabled by block copolymer self-assembly. , 2015, ACS nano.

[16]  Songlin Feng,et al.  Direct observation of titanium-centered octahedra in titanium–antimony–tellurium phase-change material , 2015, Nature Communications.

[17]  Hong‐Bo Sun,et al.  Understanding phase-change behaviors of carbon-doped Ge₂Sb₂Te₅ for phase-change memory application. , 2014, ACS applied materials & interfaces.

[18]  Naomasa Nakamura,et al.  Experimental Study of High-Density Rewritable Optical Disk Using a Blue-Laser Diode , 2003 .

[19]  J Joshua Yang,et al.  Memristive devices for computing. , 2013, Nature nanotechnology.

[20]  J. Drowart,et al.  Investigation of Inorganic Systems at High Temperature by Mass Spectrometry , 1967 .

[21]  A. Sommer Characteristics of Evaporated Antimony Films as a Function of the Antimony Source , 1966 .

[22]  Noboru Yamada,et al.  Erasable Phase-Change Optical Materials , 1996 .

[23]  A. Sarangan,et al.  Broadband Reflective Optical Limiter Using GST Phase Change Material , 2018, IEEE Photonics Journal.

[24]  Vladimir Yurchenko,et al.  Dual-Layer Frequency-Selective Grid Polarizers on Thin-Film Substrates for THz Applications , 2008, 2008 38th European Microwave Conference.

[25]  Kenichi Nishiuchi,et al.  High Speed Overwritable Phase Change Optical Disk Material , 1987 .

[26]  J. Přikryl,et al.  Ge–Sb–Te thin films deposited by pulsed laser: An ellipsometry and Raman scattering spectroscopy study , 2009 .

[27]  Medium-term thermal stability of amorphous Ge2Sb2Te5 flash-evaporated thin films with regards to change in structure and optical properties , 2009 .

[28]  Zhitang Song,et al.  Ni-doped GST materials for high speed phase change memory applications , 2015 .

[29]  Chung Lam,et al.  Brain-like associative learning using a nanoscale non-volatile phase change synaptic device array , 2014, Front. Neurosci..

[30]  D. Hewak,et al.  Synthesis and Screening of Phase Change Chalcogenide Thin Film Materials for Data Storage. , 2017, ACS combinatorial science.

[31]  Guido Torelli,et al.  A Bipolar-Selected Phase Change Memory Featuring Multi-Level Cell Storage , 2009, IEEE Journal of Solid-State Circuits.

[32]  Abu Sebastian,et al.  Accumulation-Based Computing Using Phase-Change Memories With FET Access Devices , 2015, IEEE Electron Device Letters.

[33]  Jean-Luc Battaglia,et al.  Thermal and Electrical Characterization of Materials for Phase-Change Memory Cells† , 2009 .

[34]  B. Rajendran,et al.  Neuromorphic Computing Based on Emerging Memory Technologies , 2016, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[35]  Daeil Kim,et al.  GeSbTe deposition for the PRAM application , 2007 .

[36]  Jun Gao,et al.  Active-Tuning and Polarization-Independent Absorber and Sensor in the Infrared Region Based on the Phase Change Material of Ge2Sb2Te5 (GST) , 2018, Scientific Reports.

[37]  S. Ziegler,et al.  Effect of indium doping on Ge2Sb2Te5 thin films for phase-change optical storage , 2005 .

[38]  S. Raoux,et al.  The impact of film thickness and melt-quenched phase on the phase transition characteristics of Ge2Sb2Te5 , 2010 .

[39]  K. Nakayama,et al.  Submicron Nonvolatile Memory Cell Based on Reversible Phase Transition in Chalcogenide Glasses , 2000 .

[40]  Saulius Juodkazis,et al.  Light‐Induced Tuning and Reconfiguration of Nanophotonic Structures , 2017 .

[41]  E. Rimini,et al.  Amorphous-to-crystal transition of nitrogen- and oxygen-doped Ge2Sb2Te5 films studied by in situ resistance measurements , 2004 .

[42]  Songlin Feng,et al.  Study on the Cu-doped Ge2Sb2Te5 for low-power phase change memory , 2014 .

[43]  Imad Agha,et al.  Polarization-dependent electromagnetic responses of ultrathin and highly flexible asymmetric terahertz metasurfaces , 2017, 1710.06714.

[44]  Zhitang Song,et al.  Temperature and concentration dependent crystallization behavior of Ge2Sb2Te5 phase change films: tungsten doping effects , 2014 .

[45]  Mikko Heikkilä,et al.  Atomic Layer Deposition of Materials for Phase-Change Memories , 2009 .

[46]  Cheol Seong Hwang,et al.  Cyclic PECVD of Ge2Sb2Te5 Films Using Metallorganic Sources , 2007 .

[47]  Y. A. el-Gendy Refractive index, oscillator parameters and optical band gap of e-beam evaporated Ga10Ge10Te80 films , 2009 .

[48]  Zhitang Song,et al.  Carbon doping induced Ge local structure change in as-deposited Ge2Sb2Te5 film by EXAFS and Raman spectrum , 2018 .

[49]  Andrea Redaelli,et al.  Phase Change Memory , 2015 .

[50]  Y. Khang,et al.  Generation of phase-change Ge–Sb–Te nanoparticles by pulsed laser ablation , 2005 .

[51]  Noboru Yamada,et al.  Structural basis for the fast phase change of Ge2Sb2Te5: Ring statistics analogy between the crystal and amorphous states , 2006 .

[52]  Mikko Heikkilä,et al.  Atomic layer deposition of Ge2Sb2Te5 thin films , 2009 .

[53]  J. Teng,et al.  Optically reconfigurable metasurfaces and photonic devices based on phase change materials , 2015, Nature Photonics.

[54]  Noboru Yamada,et al.  Structure of laser-crystallized Ge2Sb2+xTe5 sputtered thin films for use in optical memory , 2000 .

[55]  A. Pirovano,et al.  Crystallization and phase separation in Ge2+xSb2Te5 thin films , 2003 .

[56]  Matthias Wuttig,et al.  Origin of the optical contrast in phase-change materials. , 2007, Physical review letters.

[57]  A. Pirovano,et al.  Low-field amorphous state resistance and threshold voltage drift in chalcogenide materials , 2004, IEEE Transactions on Electron Devices.

[58]  Gary A. Sevison,et al.  Improving the performance of Ge2Sb2Te5 materials via nickel doping: Towards RF-compatible phase-change devices , 2018, Applied Physics Letters.

[59]  Harald Giessen,et al.  Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model. , 2013, Nano letters.

[60]  F. Gan,et al.  Phase change behavior in titanium-doped Ge2Sb2Te5 films , 2011 .

[61]  Y. Sasago,et al.  Amorphous thin GeSbTe phase-change films prepared by radical-assisted metal-organic chemical vapor deposition , 2015 .

[62]  Fabien Clermidy,et al.  A Novel Programming Technique to Boost Low-Resistance State Performance in Ge-Rich GST Phase Change Memory , 2014, IEEE Transactions on Electron Devices.

[63]  M. Chen,et al.  Compound materials for reversible, phase‐change optical data storage , 1986 .

[64]  Photo-induced optical activity in phase-change memory materials , 2015, Scientific reports.

[65]  D H Werner,et al.  Reconfigurable broadband infrared circularly polarizing reflectors based on phase changing birefringent metasurfaces. , 2013, Optics express.

[66]  Din Ping Tsai,et al.  Active dielectric metasurface based on phase‐change medium , 2016 .

[67]  In situ transmission electron microscopy study of the crystallization of Ge2Sb2Te5 , 2004 .

[68]  R. M. Lowe Evaporation of Antimony from PtSb , 1968 .

[70]  J. C. Phillips,et al.  Topology of covalent non-crystalline solids I: Short-range order in chalcogenide alloys , 1979 .

[71]  P. Zhou,et al.  Phase change characteristics of aluminum doped Ge(2)Sb(2)Te(5) films prepared by magnetron sputtering. , 2007, Optics express.

[72]  Ho-Gi Kim,et al.  Structural properties of Ge2Sb2Te5 thin films by metal organic chemical vapor deposition for phase change memory applications , 2006 .

[73]  Jan Siegel,et al.  Hot-wire chemical vapor deposition of chalcogenide materials for phase change memory applications , 2008 .

[74]  A. Moreac,et al.  Amorphous and crystallized Ge–Sb–Te thin films deposited by pulsed laser: Local structure using Raman scattering spectroscopy , 2012 .

[75]  N. Zheludev,et al.  Optical Response of Nanohole Arrays Filled with Chalcogenide Low‐Epsilon Media , 2018, Advanced Optical Materials.

[76]  Matthias Wuttig,et al.  Resonant bonding in crystalline phase-change materials. , 2008, Nature materials.

[77]  L. P. Shi,et al.  Crystallization and thermal stability of Sn-doped Ge2Sb2Te5 phase change material , 2008 .

[78]  M. Wuttig,et al.  Influence of deposition parameters on the properties of sputtered Ge2Sb2Te5 films , 2005 .

[79]  J. Tominaga,et al.  Understanding the phase-change mechanism of rewritable optical media , 2004, Nature materials.

[80]  J. Kolář,et al.  Laser desorption time-of-flight mass spectrometry of atomic switch memory Ge2Sb2Te5 bulk materials and its thin films. , 2014, Rapid communications in mass spectrometry : RCM.

[81]  Influence of Silicon Doping on the Properties of Sputtered Ge2Sb2Te5 Thin Film , 2009 .

[82]  Bin Zhang,et al.  Element-resolved atomic structure imaging of rocksalt Ge2Sb2Te5 phase-change material , 2016 .

[83]  A. Redaelli,et al.  Crystallization properties of Sb-rich GeSbTe alloys by in-situ morphological and electrical analysis , 2017 .

[84]  Nikolay I. Zheludev,et al.  Phase-change-driven dielectric-plasmonic transitions in chalcogenide metasurfaces , 2018, NPG Asia Materials.

[85]  W. J. Wang,et al.  Breaking the Speed Limits of Phase-Change Memory , 2012, Science.

[86]  Kang L. Wang,et al.  Direct atom-by-atom chemical identification of nanostructures and defects of topological insulators. , 2013, Nano letters.

[87]  A. Pirovano,et al.  Electronic switching in phase-change memories , 2004, IEEE Transactions on Electron Devices.

[88]  Lei Zhang,et al.  Mid-infrared tunable polarization-independent perfect absorber using a phase-change metamaterial , 2013 .

[89]  N. Yamada,et al.  Rapid‐phase transitions of GeTe‐Sb2Te3 pseudobinary amorphous thin films for an optical disk memory , 1991 .

[90]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[91]  Wei Zhang,et al.  Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing , 2017, Science.

[92]  Keiji Tanaka,et al.  Electronic Properties of Amorphous and Crystalline Ge2Sb2Te5 Films , 2005 .

[93]  G. B. Sakr,et al.  Optical properties of thermochromic Cu2HgI4 thin films , 2008 .

[94]  H. Amer,et al.  Annealing dependence of optical properties of Ga20S75Sb5 and Ga20S40Sb40 thin films , 2004 .

[95]  Masud Mansuripur,et al.  Amorphization induced by subnanosecond laser pulses in phase-change optical recording media. , 2004, Applied optics.