Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy

[1]  Yi Cui,et al.  Correlating Structure and Function of Battery Interphases at Atomic Resolution Using Cryoelectron Microscopy , 2018, Joule.

[2]  Lynden A. Archer,et al.  Cryo-STEM mapping of solid–liquid interfaces and dendrites in lithium-metal batteries , 2018, Nature.

[3]  Ji‐Guang Zhang,et al.  Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries , 2018, Nature Energy.

[4]  Shanhai Ge,et al.  Fast charging of lithium-ion batteries at all temperatures , 2018, Proceedings of the National Academy of Sciences.

[5]  Lu Li,et al.  Self-heating–induced healing of lithium dendrites , 2018, Science.

[6]  Hong Li,et al.  Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries , 2018, npj Computational Materials.

[7]  Yuyan Shao,et al.  Addressing Passivation in Lithium–Sulfur Battery Under Lean Electrolyte Condition , 2018 .

[8]  Yi Yu,et al.  Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy , 2017, Science.

[9]  Andreas Jossen,et al.  Comprehensive Modeling of Temperature-Dependent Degradation Mechanisms in Lithium Iron Phosphate Batteries , 2017 .

[10]  S. Choudhury,et al.  Nanoporous Hybrid Electrolytes for High‐Energy Batteries Based on Reactive Metal Anodes , 2017 .

[11]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[12]  Guangyuan Zheng,et al.  Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal. , 2017, Nano letters.

[13]  D. Brandell,et al.  Solubility of the Solid Electrolyte Interphase (SEI) in Sodium Ion Batteries , 2016 .

[14]  Lynden A. Archer,et al.  Design principles for electrolytes and interfaces for stable lithium-metal batteries , 2016, Nature Energy.

[15]  Cher Ming Tan,et al.  Effect of Temperature on the Aging rate of Li Ion Battery Operating above Room Temperature , 2015, Scientific Reports.

[16]  Kang Xu,et al.  Electrolytes and interphases in Li-ion batteries and beyond. , 2014, Chemical reviews.

[17]  M. Wohlfahrt‐Mehrens,et al.  Temperature dependent ageing mechanisms in Lithium-ion batteries – A Post-Mortem study , 2014 .

[18]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[19]  David R. Ely,et al.  Heterogeneous Nucleation and Growth of Lithium Electrodeposits on Negative Electrodes , 2013 .

[20]  A. Majumdar,et al.  Opportunities and challenges for a sustainable energy future , 2012, Nature.

[21]  Hyung-Man Cho,et al.  A study on time-dependent low temperature power performance of a lithium-ion battery , 2012 .

[22]  Bruno Scrosati,et al.  A high-rate long-life Li4Ti5O12/Li[Ni0.45Co0.1Mn1.45]O4 lithium-ion battery. , 2011, Nature communications.

[23]  Donald R. Sadoway,et al.  Graft copolymer-based lithium-ion battery for high-temperature operation , 2011 .

[24]  B. Hwang,et al.  Aging Effects to Solid Electrolyte Interface (SEI) Membrane Formation and the Performance Analysis of Lithium Ion Batteries , 2011, International Journal of Electrochemical Science.

[25]  Martin Winter,et al.  The Solid Electrolyte Interphase – The Most Important and the Least Understood Solid Electrolyte in Rechargeable Li Batteries , 2009 .

[26]  Dong-Qiang Liu,et al.  The elevated temperature performance of LiMn2O4 coated with Li4Ti5O12 for lithium ion battery , 2007 .

[27]  Y·V·米克海利克 Electrolytes for lithium sulfur cells , 2005 .

[28]  Charles R. Martin,et al.  Nanostructured Electrodes and the Low‐Temperature Performance of Li‐Ion Batteries , 2005 .

[29]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[30]  Kang Xu,et al.  Electrochemical impedance study on the low temperature of Li-ion batteries , 2004 .

[31]  B. Popov,et al.  Capacity fade of Sony 18650 cells cycled at elevated temperatures: Part I. Cycling performance , 2002 .

[32]  Ralph E. White,et al.  Capacity fade of Sony 18650 cells cycled at elevated temperatures. Part II. Capacity fade analysis , 2002 .

[33]  J. Shim,et al.  Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature , 2002 .

[34]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[35]  M. Ishikawa,et al.  Control of lithium metal anode cycleability by electrolyte temperature , 1999 .

[36]  D. Aurbach,et al.  The Surface Chemistry of Lithium Electrodes in Alkyl Carbonate Solutions , 1994 .