New linear codes over non-prime fields

One of the most important and challenging problems in coding theory is to explicitly construct linear codes with best possible parameters. Computers are often used to search for optimal codes. However, given the large size of the search space and computational complexity of determining the minimum distance, researchers usually focus on promising classes of linear codes with rich algebraic structures. One such class of codes is quasi-twisted (QT) codes which contains cyclic, constacyclic, and quasi-cyclic (QC) codes as sub-classes. Improving and automatizing existing search algorithms for QT codes, we have been able to obtain 64 record-breaking linear codes (codes with better parameters than currently best known linear codes) over the non-prime fields F4$\mathbb {F}_{4}$, F8$\mathbb {F}_{8}$ and F9$\mathbb {F}_{9}$. Moreover, we obtained 82 additional new codes from the standard constructions of puncturing, extending and shortening a code. Further, we have found 15 QT codes that are new among the class of QT codes.

[1]  T. Aaron Gulliver,et al.  New quasi-twisted quaternary linear codes , 2000, IEEE Trans. Inf. Theory.

[2]  Nuh Aydin,et al.  New quinary linear codes from quasi-twisted codes and their duals , 2011, Appl. Math. Lett..

[3]  Irfan Siap,et al.  New ternary quasi-cyclic codes with improved minimum distances , 2002 .

[4]  Nuh Aydin,et al.  New linear codes from constacyclic codes , 2014, J. Frankl. Inst..

[5]  Kevin T. Phelps,et al.  Coding Theory and Cryptography : The Essentials , 2022 .

[6]  Rumen N. Daskalov,et al.  New Quasi-cyclic Degenerate Linear Codes over GF(8) , 2003, Probl. Inf. Transm..

[7]  Nuh Aydin,et al.  New binary linear codes from quasi-cyclic codes and an augmentation algorithm , 2017, Applicable Algebra in Engineering, Communication and Computing.

[8]  Nuh Aydin,et al.  SEARCH FOR GOOD LINEAR CODES IN THE CLASS OF QUASI-CYCLIC AND RELATED CODES , 2010 .

[9]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[10]  Dwijendra K. Ray-Chaudhuri,et al.  New ternary quasi-cyclic codes with better minimum distances , 2000, IEEE Trans. Inf. Theory.

[11]  N. Aydin,et al.  New Linear Codes over $GF(3)$, $GF(11)$, and $GF(13)$ , 2019, Journal of Algebra Combinatorics Discrete Structures and Applications.

[12]  Rumen N. Daskalov,et al.  New binary one-generator quasi-cyclic codes , 2003, IEEE Trans. Inf. Theory.

[13]  Rumen N. Daskalov,et al.  New minimum distance bounds for linear codes over GF(5) , 2004, Discret. Math..

[14]  Vijay K. Bhargava,et al.  New Good Rate (m-1)/pm Ternary and Quaternary Quasi-Cyclic Codes , 1996, Des. Codes Cryptogr..

[15]  Alexander Vardy,et al.  The intractability of computing the minimum distance of a code , 1997, IEEE Trans. Inf. Theory.

[16]  Rumen N. Daskalov,et al.  New Minimum Distance Bounds for Linear Codes over GF(9) , 2004, Probl. Inf. Transm..

[17]  Dwijendra K. Ray-Chaudhuri,et al.  The Structure of 1-Generator Quasi-Twisted Codes and New Linear Codes , 2001, Des. Codes Cryptogr..

[18]  Markus Grassl,et al.  Some results on the structure of constacyclic codes and new linear codes over GF(7) from quasi-twisted codes , 2017, Adv. Math. Commun..

[19]  Irfan Siap,et al.  New quasi-cyclic codes over F5 , 2002, Appl. Math. Lett..

[20]  Zhi Chen Six new binary quasi-cyclic codes , 1994, IEEE Trans. Inf. Theory.