Flavin-N5-oxide: A new, catalytic motif in flavoenzymology.

[1]  R. Teufel Flavin-catalyzed redox tailoring reactions in natural product biosynthesis. , 2017, Archives of biochemistry and biophysics.

[2]  T. Begley,et al.  RutA-Catalyzed Oxidative Cleavage of the Uracil Amide Involves Formation of a Flavin-N5-oxide. , 2017, Biochemistry.

[3]  A. Mattevi,et al.  Flavins as Covalent Catalysts: New Mechanisms Emerge. , 2017, Trends in biochemical sciences.

[4]  N. Scrutton,et al.  Sweating the assets of flavin cofactors: new insight of chemical versatility from knowledge of structure and mechanism. , 2016, Current opinion in structural biology.

[5]  T. Begley,et al.  Dibenzothiophene Catabolism Proceeds via a Flavin-N5-oxide Intermediate. , 2016, Journal of the American Chemical Society.

[6]  B. Moore,et al.  Unusual flavoenzyme catalysis in marine bacteria. , 2016, Current opinion in chemical biology.

[7]  P. Dorrestein,et al.  Biochemical Establishment and Characterization of EncM's Flavin-N5-oxide Cofactor. , 2015, Journal of the American Chemical Society.

[8]  B. Moore,et al.  Flavin-mediated dual oxidation controls an enzymatic Favorskii-type rearrangement , 2013, Nature.

[9]  Christopher T Walsh,et al.  Flavoenzymes: versatile catalysts in biosynthetic pathways. , 2013, Natural product reports.

[10]  Hannes G. Leisch,et al.  Baeyer-Villiger monooxygenases: more than just green chemistry. , 2011, Chemical reviews.

[11]  R. Tan,et al.  Oxyfunctionalization of ketones bearing α‐methylene group with piperidine oxoammonium salt. Synthesis of α‐diketones from monoketones , 2010 .

[12]  T. Begley,et al.  Catalysis of a flavoenzyme-mediated amide hydrolysis. , 2010, Journal of the American Chemical Society.

[13]  D. Wemmer,et al.  The Rut Pathway for Pyrimidine Degradation: Novel Chemistry and Toxicity Problems , 2010, Journal of bacteriology.

[14]  C. Brückner,et al.  Oxoammonium‐ and Nitroxide‐Catalyzed Oxidations of Alcohols , 2010 .

[15]  A. Margaritis,et al.  Biodesulfurization of refractory organic sulfur compounds in fossil fuels. , 2007, Biotechnology advances.

[16]  W. Inwood,et al.  A previously undescribed pathway for pyrimidine catabolism. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[17]  B. Moore,et al.  EncM, a versatile enterocin biosynthetic enzyme involved in Favorskii oxidative rearrangement, aldol condensation, and heterocycle-forming reactions. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Marco W. Fraaije,et al.  Baeyer-Villiger monooxygenases, an emerging family of flavin-dependent biocatalysts , 2003 .

[19]  Q. Guo,et al.  Selective Oxyfunctionalization of Ketones Using 1‐Oxopiperidinium Salt. , 1997 .

[20]  Lei Xi,et al.  Molecular mechanisms of biocatalytic desulfurization of fossil fuels , 1996, Nature Biotechnology.

[21]  Christopher T. Walsh,et al.  Enzymic Baeyer–Villiger Oxidations by Flavin‐Dependent Monooxygenases , 1988 .

[22]  Christopher T. Walsh,et al.  Enzymatische Baeyer‐Villiger‐Oxidationen durch flavinabhängige Monooxygenasen , 1988 .

[23]  J. W. Frost,et al.  Oxidations and oxygen transfers effected by a flavin N(5)-oxide. A model for flavin-dependent monooxygenases , 1979 .

[24]  H. Orf,et al.  Oxaziridines as possible intermediates in flavin monooxygenases. , 1974, Proceedings of the National Academy of Sciences of the United States of America.