Hitting time results for Maker-Breaker games: extended abstract

We analyze classical Maker-Breaker games played on the edge set of a randomly generated graph G. We consider the random graph process and analyze, for each of the properties "being spanning k-vertex-connected", "admitting a perfect matching", and "being Hamiltonian", the first time when Maker starts having a winning strategy for building a graph possessing the target property (the so called hitting time). We prove that typically it happens precisely at the time the random graph process first reaches minimum degree 2k, 2 and 4, respectively, which is clearly optimal. The latter two statements settle conjectures of StojakoviĆ and Szabó. We also consider a general-purpose game, the expander game, which is a main ingredient of our proofs and might be of an independent interest.

[1]  Michael Krivelevich,et al.  A sharp threshold for the Hamilton cycle Maker–Breaker game , 2009 .

[2]  W. T. Gowers,et al.  RANDOM GRAPHS (Wiley Interscience Series in Discrete Mathematics and Optimization) , 2001 .

[3]  Michael Krivelevich,et al.  A sharp threshold for the Hamilton cycle Maker–Breaker game , 2009, Random Struct. Algorithms.

[4]  E. M. Palmer,et al.  Hitting time fork edge-disjoint spanning trees in a random graph , 1995 .

[5]  B. Bollobás,et al.  Random Graphs of Small Order , 1985 .

[6]  Paul Erdös,et al.  On a Combinatorial Game , 1973, J. Comb. Theory A.

[7]  Michael Krivelevich,et al.  Fast winning strategies in Maker-Breaker games , 2009, J. Comb. Theory, Ser. B.

[8]  Michael Krivelevich,et al.  Winning Fast in Sparse Graph Construction Games , 2008, Comb. Probab. Comput..

[9]  Benny Sudakov,et al.  Local Resilience and Hamiltonicity Maker–Breaker Games in Random Regular Graphs , 2009, Combinatorics, Probability and Computing.

[10]  P. Erdös,et al.  Biased Positional Games , 1978 .

[11]  Sebastian U. Stich,et al.  On Two Problems Regarding the Hamiltonian Cycle Game , 2009, Electron. J. Comb..

[12]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[13]  Michael Krivelevich,et al.  Global Maker-Breaker games on sparse graphs , 2011, Eur. J. Comb..

[14]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..

[15]  Kathryn Fraughnaugh,et al.  Introduction to graph theory , 1973, Mathematical Gazette.

[16]  J. Beck Combinatorial Games: Tic-Tac-Toe Theory , 2008 .

[17]  A. Frieze ON MATCHINGS AND HAMILTON CYCLES IN RANDOM GRAPHS , 1988 .

[18]  Michael Krivelevich,et al.  On two Hamilton cycle problems in random graphs , 2008 .

[19]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[20]  Tibor Szabó,et al.  Positional games on random graphs , 2006, Random Struct. Algorithms.

[21]  Alfred Lehman,et al.  A Solution of the Shannon Switching Game , 1964 .

[22]  Aleksandar Pekec,et al.  A Winning Strategy for the Ramsey Graph Game , 1995, Combinatorics, Probability and Computing.

[23]  F. C. Santos,et al.  Games on Graphs , 1976 .