Convergence of SPH Method for Scalar Nonlinear Conservation Laws
暂无分享,去创建一个
[1] P. Raviart,et al. A particle method for first-order symmetric systems , 1987 .
[2] Bernardo Cockburn,et al. Convergence of the finite volume method for multidimensional conservation laws , 1995 .
[3] S. Osher. Riemann Solvers, the Entropy Condition, and Difference , 1984 .
[4] Robert F. Stellingwerf,et al. Smooth particle hydrodynamics , 1991 .
[5] M. Crandall,et al. Monotone difference approximations for scalar conservation laws , 1979 .
[6] Jean-Paul Vila,et al. Numerical viscosity and convergence of finite volume methods for conservation laws with boundary conditions , 1995 .
[7] S. Osher,et al. Numerical viscosity and the entropy condition , 1979 .
[8] S. Kružkov. FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .
[9] Anders Szepessy,et al. Convergence of a shock-capturing streamline diffusion finite element method for a scalar conservation law in two space dimensions , 1989 .
[10] L. Lucy. A numerical approach to the testing of the fission hypothesis. , 1977 .
[11] D. Kröner,et al. Convergence of upwind finite volume schemes for scalar conservation laws in two dimensions , 1994 .
[12] Bachir Benmoussa. Analyse numerique de methodes particulaires regularisees de type sph pour les lois de conservation , 1998 .
[13] Ami Harten,et al. Self adjusting grid methods for one-dimensional hyperbolic conservation laws☆ , 1983 .
[14] P. Lax,et al. On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .
[15] W. Benz. Smooth Particle Hydrodynamics: A Review , 1990 .
[16] Joseph John Monaghan,et al. Controlling Penetration , 1986 .
[17] P. Raviart. An analysis of particle methods , 1985 .
[18] T. Gallouët,et al. A uniqueness result for measure-valued solutions of nonlinear hyperbolic equations , 1993, Differential and Integral Equations.
[19] Jean-Paul Vila,et al. ON PARTICLE WEIGHTED METHODS AND SMOOTH PARTICLE HYDRODYNAMICS , 1999 .