m-Asynchronous cellular automata: from fairness to quasi-fairness

A new model for the study of asynchronous cellular automata dynamical behavior is introduced with the main purpose of unifying several existing paradigms. The main idea is to measure the set of updating sequences to quantify the dependency of the properties under investigation from them. We propose to use the class of quasi-fair measures, namely measures that satisfy some fairness conditions on the updating sequences. Basic set properties like injectivity and surjectivity are adapted to the new setting and studied. In particular, we prove that they are dimensions sensitive properties (i.e., they are decidable in dimension 1 and undecidable in higher dimensions). A first exploration of dynamical properties is also started, some results about equicontinuity and expansivity behaviors are provided.

[1]  Rodney A. Brooks,et al.  Asynchrony induces stability in cellular automata based models , 1994 .

[2]  Luigi Acerbi,et al.  Surjective multidimensional cellular automata are non-wandering: A combinatorial proof , 2013, Inf. Process. Lett..

[3]  Enrico Formenti,et al.  Local rule distributions, language complexity and non-uniform cellular automata , 2013, Theor. Comput. Sci..

[4]  Santanu Chattopadhyay,et al.  Additive cellular automata : theory and applications , 1997 .

[5]  Enrico Formenti,et al.  On the directional dynamics of additive cellular automata , 2009, Theor. Comput. Sci..

[6]  Ferdinand Peper,et al.  Delay-insensitive computation in asynchronous cellular automata , 2005, J. Comput. Syst. Sci..

[7]  G. A. Hedlund Endomorphisms and automorphisms of the shift dynamical system , 1969, Mathematical systems theory.

[8]  Damien Regnault,et al.  Progresses in the analysis of stochastic 2D cellular automata: A study of asynchronous 2D minority , 2007, Theor. Comput. Sci..

[9]  Serafino Amoroso,et al.  Decision Procedures for Surjectivity and Injectivity of Parallel Maps for Tessellation Structures , 1972, J. Comput. Syst. Sci..

[10]  T. E. Ingerson,et al.  Structure in asynchronous cellular automata , 1984 .

[11]  Enrico Formenti,et al.  Non-uniform cellular automata: Classes, dynamics, and decidability , 2011, Inf. Comput..

[12]  Enrico Formenti,et al.  Multidimensional cellular automata: closing property, quasi-expansivity, and (un)decidability issues , 2014, Theor. Comput. Sci..

[13]  Enrico Formenti,et al.  Some results about the chaotic behavior of cellular automata , 2005, Theor. Comput. Sci..

[14]  Bastien Chopard,et al.  Cellular Automata and Lattice Boltzmann Modeling of Physical Systems , 2012, Handbook of Natural Computing.

[15]  Alberto Dennunzio From One-dimensional to Two-dimensional Cellular Automata , 2012, Fundam. Informaticae.

[16]  Henryk Fuks,et al.  Probabilistic cellular automata with conserved quantities , 2003, nlin/0305051.

[17]  Enrico Formenti,et al.  Computing Issues of Asynchronous CA , 2012, Fundam. Informaticae.

[18]  Grzegorz Rozenberg,et al.  Handbook of Natural Computing , 2011, Springer Berlin Heidelberg.

[19]  L. Kier,et al.  Cellular automata modeling of chemical systems : a textbook and laboratory manual , 2005 .

[20]  Enrico Formenti,et al.  Periodic Orbits and Dynamical Complexity in Cellular Automata , 2013, Fundam. Informaticae.

[21]  Gianpiero Cattaneo,et al.  Solution of some conjectures about topological properties of linear cellular automata , 2004, Theor. Comput. Sci..

[22]  Henning S. Mortveit,et al.  Order Independence in Asynchronous Cellular Automata , 2008, J. Cell. Autom..

[23]  Sukanta Das,et al.  Non-uniform Cellular Automata , 2014, Theor. Comput. Sci..

[24]  Grégoire Nicolis,et al.  Synchronous versus asynchronous dynamics in spatially distributed systems , 1994 .

[25]  Damien Regnault,et al.  Abrupt Behaviour Changes in Cellular Automata under Asynchronous Dynamics , 2006 .

[26]  Gianpiero Cattaneo,et al.  A full cellular automaton to simulate predator-prey systems comparison with the discrete time Lotka-Volterra equations , 2006, JAC.

[27]  Paul R. Halmos Inverses and Composites , 1974 .

[28]  Gianpiero Cattaneo,et al.  Non-uniform Cellular Automata , 2009, LATA.

[29]  Enrico Formenti,et al.  Decidable Properties of 2D Cellular Automata , 2008, Developments in Language Theory.

[30]  Jarkko Kari,et al.  Reversibility and Surjectivity Problems of Cellular Automata , 1994, J. Comput. Syst. Sci..

[31]  Alberto Dennunzio,et al.  A Predator-Prey Cellular Automaton with Parasitic Interactions and Environmental Effects , 2008, Fundam. Informaticae.

[32]  Thomas Worsch,et al.  (Intrinsically?) Universal Asynchronous CA , 2012, ACRI.

[33]  Nazim Fatès,et al.  Asynchronous Behavior of Double-Quiescent Elementary Cellular Automata , 2006, LATIN.

[34]  Pierre Guillon,et al.  Sand automata as cellular automata , 2009, Theor. Comput. Sci..

[35]  B. Schönfisch,et al.  Synchronous and asynchronous updating in cellular automata. , 1999, Bio Systems.

[36]  Luigi Acerbi,et al.  Conservation of some dynamical properties for operations on cellular automata , 2009, Theor. Comput. Sci..

[37]  Nazim Fatès,et al.  Fully asynchronous behavior of double-quiescent elementary cellular automata , 2006, Theor. Comput. Sci..

[38]  Petr Kurka,et al.  Cellular Automata Dynamical Systems , 2012, Handbook of Natural Computing.

[39]  Pierre Guillon,et al.  Stable Dynamics of Sand Automata , 2008, IFIP TCS.

[40]  Gianpiero Cattaneo,et al.  Chaotic Subshifts and Related Languages Applications to one-dimensional Cellular Automata , 2002, Fundam. Informaticae.

[41]  Giancarlo Mauri,et al.  m-Asynchronous Cellular Automata , 2012, ACRI.

[42]  Nazim Fatès,et al.  Fully Asynchronous Behavior of Double-Quiescent Elementary Cellular Automata , 2005, MFCS.

[43]  Nazim Fatès,et al.  An Experimental Study of Robustness to Asynchronism for Elementary Cellular Automata , 2004, Complex Syst..

[44]  H. Fuks Nondeterministic density classification with diffusive probabilistic cellular automata. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  Luca Manzoni Asynchronous cellular automata and dynamical properties , 2012, Natural Computing.