Overexpressing atpXF enhanced photo-fermentative hydrogen production performance of Rhodobacter sphaeroides

[1]  Liejin Guo,et al.  Overexpressing F0/F1 operon of ATPase in Rhodobacter sphaeroides enhanced its photo-fermentative hydrogen production , 2016 .

[2]  Liejin Guo,et al.  Coexpression of Mo- and Fe-nitrogenase in Rhodobacter capsulatus enhanced its photosynthetic hydrogen production , 2015 .

[3]  Panyue Zhang,et al.  Biomass and carotenoid production in photosynthetic bacteria wastewater treatment: effects of light intensity. , 2014, Bioresource technology.

[4]  A. Trchounian,et al.  Regulation of hydrogen photoproduction in Rhodobacter sphaeroides batch culture by external oxidizers and reducers , 2014 .

[5]  Liejin Guo,et al.  Remarkable enhancement on hydrogen production performance of Rhodobacter sphaeroides by disrupting spbA and hupSL genes , 2014 .

[6]  A. Reungsang,et al.  Isolation, characterization and optimization of photo-hydrogen production conditions by newly isolated Rhodobacter sphaeroides KKU-PS5 , 2014 .

[7]  Xueqing Wang,et al.  A newly isolated Rhodobacter sphaeroides HY01 with high hydrogen production performance , 2014 .

[8]  Mark Gomelsky,et al.  Metabolic engineering of Rhodobacter sphaeroides for improved hydrogen production , 2014 .

[9]  Liejin Guo,et al.  Enhanced photosynthetic hydrogen production performance of Rhodobacter capsulatus by deactivating CBB cycle and cytochrome c oxidase , 2014 .

[10]  A. Trchounian,et al.  Concentration-dependent effects of metronidazole, inhibiting nitrogenase, on hydrogen photoproduction and proton-translocating ATPase activity of Rhodobacter sphaeroides , 2014 .

[11]  A. Trchounian,et al.  Bio-hydrogen production and the F0F1-ATPase activity of Rhodobacter sphaeroides: Effects of various heavy metal ions , 2012 .

[12]  Haijun Yang,et al.  Effect of carbon sources on the photobiological production of hydrogen using Rhodobacter sphaeroides RV , 2012 .

[13]  Liejin Guo,et al.  Enhanced hydrogen production performance of Rubrivivax gelatinosus M002 using mixed carbon sources , 2012 .

[14]  Liejin Guo,et al.  Enhanced photo-fermentative hydrogen production by Rhodobacter capsulatus with pigment content manipulation. , 2012, Bioresource technology.

[15]  Dipankar Ghosh,et al.  Strategies for improving biological hydrogen production. , 2012, Bioresource technology.

[16]  Mi‐Sun Kim,et al.  Enhancing photo-fermentative hydrogen production by Rhodobacter sphaeroides KD131 and its PHB synthase deleted-mutant from acetate and butyrate , 2011 .

[17]  T. Keskin,et al.  Photofermentative hydrogen production from wastes. , 2011, Bioresource technology.

[18]  A. Melis,et al.  Photobiological hydrogen production: Recent advances and state of the art. , 2011, Bioresource technology.

[19]  Pavel S. Ivanov,et al.  Flux balance analysis of photoheterotrophic growth of purple nonsulfur bacteria relevant to biohydro , 2010 .

[20]  J. McKinlay,et al.  Photobiological production of hydrogen gas as a biofuel. , 2010, Current opinion in biotechnology.

[21]  Juanita Mathews,et al.  Metabolic pathway engineering for enhanced biohydrogen production , 2009 .

[22]  P. Dimroth,et al.  Essentials for ATP synthesis by F1F0 ATP synthases. , 2009, Annual review of biochemistry.

[23]  Jianlong Wang,et al.  Kinetic models for fermentative hydrogen production: A review , 2009 .

[24]  J. Yue,et al.  Self-assembly of F0F1-ATPase motors and ghost. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[25]  A. Mulkidjanian,et al.  Met23Lys mutation in subunit gamma of F(O)F(1)-ATP synthase from Rhodobacter capsulatus impairs the activation of ATP hydrolysis by protonmotive force. , 2007, Biochimica et biophysica acta.

[26]  J. Magnin,et al.  Increasing biohydrogen production by metabolic engineering , 2006 .

[27]  P. Turina,et al.  Modulation of proton pumping efficiency in bacterial ATP synthases. , 2006, Biochimica et biophysica acta.

[28]  A. Mulkidjanian,et al.  Proton slip in the ATP synthase of Rhodobacter capsulatus: induction, proton conduction, and nucleotide dependence. , 2005, Biochimica et biophysica acta.

[29]  Michael Börsch,et al.  Binding of the b-subunit in the ATP synthase from Escherichia coli. , 2004, Biochemistry.

[30]  I. Eroglu,et al.  Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides , 2002 .

[31]  The "second stalk" of Escherichia coli ATP synthase: structure of the isolated dimerization domain. , 2002, Biochemistry.

[32]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[33]  A. Mulkidjanian,et al.  Coupling of proton flow to ATP synthesis in Rhodobacter capsulatus: F(0)F(1)-ATP synthase is absent from about half of chromatophores. , 2001, Biochimica et biophysica acta.

[34]  K. Altendorf,et al.  The ATP synthase of Escherichia coli: structure and function of F(0) subunits. , 2000, Biochimica et biophysica acta.

[35]  T. Yanagida,et al.  Mechanical rotation of the c subunit oligomer in ATP synthase (F0F1): direct observation. , 1999, Science.

[36]  J. Zhang,et al.  The second stalk of the yeast ATP synthase complex: identification of subunits showing cross-links with known positions of subunit 4 (subunit b). , 1999, Biochemistry.

[37]  A. Edison,et al.  Formation of the b subunit dimer is necessary for interaction with F1-ATPase. , 1998, Biochemistry.

[38]  Kazuhiko Kinosita,et al.  Direct observation of the rotation of F1-ATPase , 1997, Nature.

[39]  W. Junge,et al.  Intersubunit rotation in active F-ATPase , 1996, Nature.

[40]  V. V. Bulygin,et al.  Rotation of subunits during catalysis by Escherichia coli F1-ATPase. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[41]  D. Kobayashi,et al.  Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. , 1988, Gene.

[42]  C. Kumamoto,et al.  Genetic evidence for interaction between the a and b subunits of the F0 portion of the Escherichia coli proton translocating ATPase. , 1986, The Journal of biological chemistry.

[43]  K. Aldape,et al.  Role of the b subunit of the Escherichia coli proton-translocating ATPase. A mutagenic analysis. , 1985, The Journal of biological chemistry.

[44]  D. Jans,et al.  An additional acidic residue in the membrane portion of the b-subunit of the energy-transducing adenosine triphosphatase of Escherichia coli affects both assembly and function. , 1984, The Biochemical journal.

[45]  H. Gest,et al.  H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: H2 production by growing cultures , 1977, Journal of bacteriology.

[46]  H. Gest,et al.  H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: production and utilization of H2 by resting cells , 1977, Journal of bacteriology.

[47]  H. Boyer,et al.  A complementation analysis of the restriction and modification of DNA in Escherichia coli. , 1969, Journal of molecular biology.

[48]  W R SISTROM,et al.  A requirement for sodium in the growth of Rhodopseudomonas spheroides. , 1960, Journal of general microbiology.