Towards a formal definition of static and dynamic electronic correlations.

Some of the most spectacular failures of density-functional and Hartree-Fock theories are related to an incorrect description of the so-called static electron correlation. Motivated by recent progress in the N-representability problem of the one-body density matrix for pure states, we propose a method to quantify the static contribution to the electronic correlation. By studying several molecular systems we show that our proposal correlates well with our intuition of static and dynamic electron correlation. Our results bring out the paramount importance of the occupancy of the highest occupied natural spin-orbital in such quantification.

[1]  Weitao Yang,et al.  Insights into Current Limitations of Density Functional Theory , 2008, Science.

[2]  A. Klyachko,et al.  The Pauli Principle Revisited , 2008, 0802.0918.

[3]  D. Mazziotti Pure- N -representability conditions of two-fermion reduced density matrices , 2016 .

[4]  C. Schilling Hubbard model: Pinning of occupation numbers and role of symmetries , 2015, 1506.08833.

[5]  G. Scuseria,et al.  Seniority number description of potential energy surfaces: Symmetric dissociation of water, N2, C2, and Be2. , 2015, The Journal of chemical physics.

[6]  Darwin W. Smith N-Representability Problem for Fermion Density Matrices. II. The First-Order Density Matrix with N Even , 1966 .

[7]  New measure of electron correlation. , 2005, Physical review letters.

[8]  P. Salvador,et al.  Separation of dynamic and nondynamic correlation. , 2016, Physical chemistry chemical physics : PCCP.

[9]  Weitao Yang,et al.  Fractional spins and static correlation error in density functional theory. , 2008, The Journal of chemical physics.

[10]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[11]  Sandro Sorella,et al.  Geminal wave functions with Jastrow correlation: A first application to atoms , 2003 .

[12]  H. Lischka,et al.  Lagrange function method for energy optimization directly in the space of natural orbitals: WANG et al. , 2017 .

[13]  P. L'evay,et al.  Entanglement classification of three fermions with up to nine single-particle states , 2013, 1312.2786.

[14]  P. Exner,et al.  Mathematical Results in Quantum Mechanics , 2002 .

[15]  E. Baerends,et al.  The density matrix functional approach to electron correlation: dynamic and nondynamic correlation along the full dissociation coordinate. , 2014, The Journal of chemical physics.

[16]  N. Friis Reasonable fermionic quantum information theories require relativity , 2015, 1502.04476.

[17]  TWO-SITE HUBBARD MODEL, THE BARDEEN-COOPER-SCHRIEFFER MODEL, AND THE CONCEPT OF CORRELATION ENTROPY , 1997 .

[18]  A. J. Coleman THE STRUCTURE OF FERMION DENSITY MATRICES , 1963 .

[19]  D. Mazziotti,et al.  The cumulant two-particle reduced density matrix as a measure of electron correlation and entanglement. , 2006, The Journal of chemical physics.

[20]  Laimutis Bytautas,et al.  Seniority and orbital symmetry as tools for establishing a full configuration interaction hierarchy. , 2011, The Journal of chemical physics.

[21]  Matthias Christandl,et al.  Entanglement Polytopes: Multiparticle Entanglement from Single-Particle Information , 2012, Science.

[22]  Jeng-Da Chai Density functional theory with fractional orbital occupations. , 2012, The Journal of chemical physics.

[23]  J. Hollett,et al.  A cumulant functional for static and dynamic correlation. , 2016, The Journal of chemical physics.

[24]  C. A. Coulson,et al.  XXXIV. Notes on the molecular orbital treatment of the hydrogen molecule , 1949 .

[25]  Generalized Pauli constraints in reduced density matrix functional theory. , 2015, The Journal of chemical physics.

[26]  A. Shimony Degree of Entanglement a , 1995 .

[27]  E. Neuscamman,et al.  The Jastrow antisymmetric geminal power in Hilbert space: theory, benchmarking, and application to a novel transition state. , 2013, The Journal of chemical physics.

[28]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[29]  P. L'evay,et al.  Three fermions with six single-particle states can be entangled in two inequivalent ways , 2008, 0806.4076.

[30]  A. Scemama,et al.  Using CIPSI nodes in diffusion Monte Carlo , 2016, 1607.06742.

[31]  L. Mitas,et al.  Recent Progress in Quantum Monte Carlo , 2016 .

[32]  Harrison Shull,et al.  NATURAL ORBITALS IN THE QUANTUM THEORY OF TWO-ELECTRON SYSTEMS , 1956 .

[33]  David A. Mazziotti,et al.  Structure of the one-electron reduced density matrix from the generalized Pauli exclusion principle , 2015 .

[34]  Vincent M. Klinkhamer,et al.  Two fermions in a double well: exploring a fundamental building block of the Hubbard model. , 2014, Physical review letters.

[35]  Szil'ard Szalay,et al.  Partial separability revisited II: Multipartite entanglement measures , 2015, 1503.06071.

[36]  Matthias Christandl,et al.  Pinning of fermionic occupation numbers. , 2012, Physical review letters.

[37]  A. Klyachko The Pauli exclusion principle and beyond , 2009, 0904.2009.

[38]  Axel D. Becke,et al.  Density functionals for static, dynamical, and strong correlation. , 2013, The Journal of chemical physics.

[39]  J. Ignacio Cirac,et al.  Quantum correlations in two-fermion systems , 2001 .

[40]  Michel Caffarel,et al.  Using perturbatively selected configuration interaction in quantum Monte Carlo calculations , 2013 .

[41]  V. H. Smith,et al.  Open- and closed-shell states in few-particle quantum mechanics. I. Definitions , 1968 .

[42]  J. M. Zhang,et al.  Optimal multiconfiguration approximation of an N -fermion wave function , 2013, 1309.1848.

[43]  P. Löwdin Quantum Theory of Many-Particle Systems. III. Extension of the Hartree-Fock Scheme to Include Degenerate Systems and Correlation Effects , 1955 .

[44]  M. Casula,et al.  Correlated geminal wave function for molecules: an efficient resonating valence bond approach. , 2004, The Journal of chemical physics.

[45]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[46]  A. DePrince Variational optimization of the two-electron reduced-density matrix under pure-state N-representability conditions. , 2016, The Journal of chemical physics.

[47]  C. L. Benavides-Riveros,et al.  Quasipinning and selection rules for excitations in atoms and molecules , 2014, 1409.6953.

[48]  M. Marques,et al.  Relating correlation measures: The importance of the energy gap , 2017, 1702.08422.

[49]  C. Schilling Quantum marginal problem and its physical relevance , 2015, 1507.00299.

[50]  Ye Luo,et al.  Static and Dynamical Correlation in Diradical Molecules by Quantum Monte Carlo Using the Jastrow Antisymmetrized Geminal Power Ansatz. , 2014, Journal of chemical theory and computation.

[51]  Trygve Helgaker,et al.  Electron correlation: The many‐body problem at the heart of chemistry , 2007, J. Comput. Chem..

[52]  C. L. Benavides-Riveros,et al.  Quasipinning and entanglement in the lithium isoelectronic series , 2013, 1306.6528.

[53]  E. Wigner On the Interaction of Electrons in Metals , 1934 .

[54]  C. L. Benavides-Riveros,et al.  Natural Extension of Hartree–Fock Through Extremal 1-Fermion Information: Overview and Application to the Lithium Atom , 2016, 1711.09129.

[55]  V. Vedral,et al.  Influence of the Fermionic Exchange Symmetry beyond Pauli's Exclusion Principle , 2015, 1509.00358.

[56]  Sufficient conditions for pure state N-representability , 1999 .

[57]  J. S. Dehesa,et al.  Separability criteria and entanglement measures for pure states of N identical fermions , 2009, 1002.0465.

[58]  V. Vedral,et al.  Pinning of fermionic occupation numbers: General concepts and one spatial dimension , 2016, 1602.05198.

[59]  V. Vedral,et al.  Pinning of fermionic occupation numbers: Higher spatial dimensions and spin , 2016, 1606.05334.

[60]  C. Schilling Quasipinning and its relevance forN-fermion quantum states , 2014, 1409.0019.

[61]  Peter M W Gill,et al.  The two faces of static correlation. , 2011, The Journal of chemical physics.

[62]  M. Walter,et al.  When is a pure state of three qubits determined by its single-particle reduced density matrices? , 2012, 1207.3849.

[63]  Markus Reiher,et al.  Orbital Entanglement in Bond-Formation Processes. , 2013, Journal of chemical theory and computation.

[64]  K. Dennis,et al.  The conditions on the one-matrix for three-body fermion wavefunctions with one-rank equal to six , 1972 .

[65]  Ali Alavi,et al.  Communications: Survival of the fittest: accelerating convergence in full configuration-interaction quantum Monte Carlo. , 2010, The Journal of chemical physics.

[66]  C. L. Benavides-Riveros,et al.  Reconstructing quantum states from single-party information , 2017, 1703.01612.

[67]  Tai Tsun Wu,et al.  Exploring degrees of entanglement , 2010, Quantum Inf. Process..