A mean-covariance decomposition method for battery capacity prognostics

[1]  T. Weigert,et al.  State-of-charge prediction of batteries and battery–supercapacitor hybrids using artificial neural networks , 2011 .

[2]  Julian de Hoog,et al.  A Multi-Factor Battery Cycle Life Prediction Methodology for Optimal Battery Management , 2015, e-Energy.

[3]  Yuang-Shung Lee,et al.  A Merged Fuzzy Neural Network and Its Applications in Battery State-of-Charge Estimation , 2007, IEEE Transactions on Energy Conversion.

[4]  Wei He,et al.  State of charge estimation for electric vehicle batteries using unscented kalman filtering , 2013, Microelectron. Reliab..

[5]  M. Safari,et al.  Multimodal Physics-Based Aging Model for Life Prediction of Li-Ion Batteries , 2009 .

[6]  Vladimir Vapnik,et al.  Support-vector networks , 2004, Machine Learning.

[7]  Bo-Suk Yang,et al.  Intelligent prognostics for battery health monitoring based on sample entropy , 2011, Expert Syst. Appl..

[8]  Jian Zhang,et al.  Phenomenologically modeling the formation and evolution of the solid electrolyte interface on the graphite electrode for lithium-ion batteries , 2008 .

[9]  Puqiang Zhang,et al.  Data-driven method based on particle swarm optimization and k-nearest neighbor regression for estimating capacity of lithium-ion battery , 2014 .

[10]  Bhaskar Saha,et al.  Prognostics Methods for Battery Health Monitoring Using a Bayesian Framework , 2009, IEEE Transactions on Instrumentation and Measurement.

[11]  Hongwen He,et al.  A data-driven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium-ion olymer battery in electric vehicles , 2014 .

[12]  Roumiana Tsenkova,et al.  Computational simulations and a practical application of moving-window two-dimensional correlation spectroscopy , 2006 .

[13]  Yu Peng,et al.  Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression , 2013, Microelectron. Reliab..

[14]  D. Dunson,et al.  Random Effects Selection in Linear Mixed Models , 2003, Biometrics.

[15]  Siem Jan Koopman,et al.  A Dynamic Multivariate Heavy-Tailed Model for Time-Varying Volatilities and Correlations , 2010 .

[16]  K. T. Chau,et al.  A new battery available capacity indicator for electric vehicles using neural network , 2002 .

[17]  Gregory L. Plett,et al.  Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation , 2004 .

[18]  Chenghui Zhang,et al.  Estimation of battery state-of-charge using ν-support vector regression algorithm , 2008 .

[19]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[20]  M. Pourahmadi Joint mean-covariance models with applications to longitudinal data: Unconstrained parameterisation , 1999 .

[21]  Gregory L. Plett,et al.  Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs Part 2: Simultaneous state and parameter estimation , 2006 .

[22]  M. Wohlfahrt‐Mehrens,et al.  Ageing mechanisms in lithium-ion batteries , 2005 .

[23]  R. Rebonato,et al.  The most general methodology for creating a valid correlation matrix for risk management and option pricing purposes , 2000 .

[24]  Matthew B. Pinson,et al.  Theory of SEI Formation in Rechargeable Batteries: Capacity Fade, Accelerated Aging and Lifetime Prediction , 2012, 1210.3672.

[25]  Jean-Michel Vinassa,et al.  Behavior and state-of-health monitoring of Li-ion batteries using impedance spectroscopy and recurrent neural networks , 2012 .

[26]  Yoshua Bengio,et al.  Random Search for Hyper-Parameter Optimization , 2012, J. Mach. Learn. Res..

[27]  Xiaosong Hu,et al.  Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for elec , 2011 .

[28]  Yuang-Shung Lee,et al.  Soft Computing for Battery State-of-Charge (BSOC) Estimation in Battery String Systems , 2008, IEEE Transactions on Industrial Electronics.

[29]  Chao Hu,et al.  Online estimation of lithium-ion battery capacity using sparse Bayesian learning , 2015 .

[30]  Bo-Hyung Cho,et al.  Li-Ion Battery SOC Estimation Method based on the Reduced Order Extended Kalman Filtering , 2006 .

[31]  M. Pecht,et al.  A Bayesian approach for Li-Ion battery capacity fade modeling and cycles to failure prognostics , 2015 .

[32]  Chenlei Leng,et al.  A joint modelling approach for longitudinal studies , 2015 .

[33]  Krishna R. Pattipati,et al.  System Identification and Estimation Framework for Pivotal Automotive Battery Management System Characteristics , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[34]  Zhongbao Zhou,et al.  A Bayesian framework for on-line degradation assessment and residual life prediction of secondary batteries in spacecraft , 2013, Reliab. Eng. Syst. Saf..

[35]  R. Kohn,et al.  Parsimonious Covariance Matrix Estimation for Longitudinal Data , 2002 .

[36]  Hurng-Liahng Jou,et al.  Auxiliary diagnosis method for lead–acid battery health based on sample entropy , 2009 .

[37]  Seongjun Lee,et al.  Complementary Cooperation Algorithm Based on DEKF Combined With Pattern Recognition for SOC/Capacity Estimation and SOH Prediction , 2012, IEEE Transactions on Power Electronics.

[38]  Douglas M. Bates,et al.  Unconstrained parametrizations for variance-covariance matrices , 1996, Stat. Comput..

[39]  Robert Leconte,et al.  Efficient stochastic generation of multi-site synthetic precipitation data , 2007 .

[40]  Michael Buchholz,et al.  Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods , 2013 .

[41]  Seongjun Lee,et al.  State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge , 2008 .

[42]  Gan Ning,et al.  Capacity fade study of lithium-ion batteries cycled at high discharge rates , 2003 .

[43]  Kai Goebel,et al.  Modeling Li-ion Battery Capacity Depletion in a Particle Filtering Framework , 2009 .

[44]  Cao Binggang,et al.  State of charge estimation based on evolutionary neural network , 2008 .

[45]  Mark W. Verbrugge,et al.  Battery Cycle Life Prediction with Coupled Chemical Degradation and Fatigue Mechanics , 2012 .

[46]  Michael Osterman,et al.  Prognostics of lithium-ion batteries based on DempsterShafer theory and the Bayesian Monte Carlo me , 2011 .

[47]  Nan M. Laird,et al.  Using the General Linear Mixed Model to Analyse Unbalanced Repeated Measures and Longitudinal Data , 1997 .

[48]  Terry Hansen,et al.  Support vector based battery state of charge estimator , 2005 .

[49]  Jae Sik Chung,et al.  A Multiscale Framework with Extended Kalman Filter for Lithium-Ion Battery SOC and Capacity Estimation , 2010 .