Sums of divisors, perfect numbers, and factoring

Let <italic>N</italic> be a positive integer, and let &sgr;(<italic>N</italic>) denote the sum of the positive integral divisors of <italic>N</italic>. We show computing &sgr;(<italic>N</italic>) is equivalent to factoring <italic>N</italic> in the following sense: there is a random polynomial time algorithm that, given &sgr;(<italic>N</italic>), produces the prime factorization of <italic>N</italic>, and &sgr;(<italic>N</italic>) can be easily computed given the factorization of <italic>N.</italic> We show that the same sort of result holds for &sgr;<subscrpt>k</subscrpt>(<italic>N</italic>), the sum of the <italic>k</italic>-th powers of divisors of <italic>N.</italic> We give three new examples of problems that are in Gill's complexity class BPP: {<italic>perfect numbers</italic>}, {<italic>multiply perfect numbers</italic>}, and <italic>{amicable pairs}.</italic> These are the first “natural” candidates for BPP - RP.

[1]  R. D. Carmichael A table of multiply perfect numbers , 1907 .

[2]  E. Wirsing,et al.  Über die Häufigkeit vollkommener Zahlen , 1957 .

[3]  Jeffrey Shallit,et al.  Factoring with cyclotomic polynomials , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[4]  D. Bernstein DISTINGUISHING PRIME NUMBERS FROM COMPOSITE NUMBERS , 2022 .

[5]  J. Dixon Asymptotically fast factorization of integers , 1981 .

[6]  J. Rosser,et al.  Approximate formulas for some functions of prime numbers , 1962 .

[7]  John T. Gill,et al.  Computational complexity of probabilistic Turing machines , 1974, STOC '74.

[8]  Elwyn R. Berlekamp,et al.  Algebraic coding theory , 1984, McGraw-Hill series in systems science.

[9]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[10]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[11]  D. Shanks Class number, a theory of factorization, and genera , 1971 .

[12]  A. Adrian Albert,et al.  Fundamental Concepts of Higher Algebra , 1958 .

[13]  E. Wright,et al.  An Introduction to the Theory of Numbers , 1939 .

[14]  Volker Strassen,et al.  A Fast Monte-Carlo Test for Primality , 1977, SIAM J. Comput..

[15]  E. Bach Discrete Logarithms and Factoring , 1984 .

[16]  J. M. Pollard,et al.  Theorems on factorization and primality testing , 1974, Mathematical Proceedings of the Cambridge Philosophical Society.

[17]  L. Adleman,et al.  On distinguishing prime numbers from composite numbers , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[18]  Joseph S. Madachy,et al.  The History and Discovery of Amicable Numbers--Part 1 , 1972 .

[19]  Gary L. Miller,et al.  Riemann's Hypothesis and tests for primality , 1975, STOC.

[20]  Leonard Carlitz The Arithmetic of Polynomials in a Galois Field , 1932 .