Magneto-Optical Sensing of the Pressure Driven Magnetic Ground States in Bulk CrSBr.

We report on low temperature magneto-photoluminescence experiments performed on a semiconducting bulk van der Waals antiferromagnet. Applying hydrostatic pressure strongly modifies the interlayer exchange interaction strength, by 1700 % at P = 6 GPa, and the magnetocrystalline anisotropy parameters, providing the unique oportunity explore the magnetic phase diagram of this anisotropic antiferromagnet. By probing the evolution of excitons in this bulk material, we describe the different magnetic phases by extracting the saturation magnetic field at different values of the applied pressure. We generate a spin-flop magnetic phase which is stabilized because of the modified competition between interlayer exchange and magnetocrystalline anisotropy.

[1]  Zdenek Sofer,et al.  Raman scattering signatures of strong spin-phonon coupling in the bulk magnetic van der Waals material CrSBr , 2022, Physical Review B.

[2]  A. Barra,et al.  Microscopic parameters of the van der Waals CrSBr antiferromagnet from microwave absorption experiments , 2022, Physical Review B.

[3]  Michael E. Ziebel,et al.  Designing Magnetic Properties in CrSBr through Hydrostatic Pressure and Ligand Substitution , 2022, Advanced Physics Research.

[4]  K. Novoselov,et al.  Breaking through the Mermin-Wagner limit in 2D van der Waals magnets , 2022, Nature Communications.

[5]  J. Moodera,et al.  Sensing the Local Magnetic Environment through Optically Active Defects in a Layered Magnetic Semiconductor. , 2022, ACS nano.

[6]  Ahmet Avsar Highly anisotropic van der Waals magnetism , 2022, Nature Materials.

[7]  D. Ralph,et al.  Anisotropic Gigahertz Antiferromagnetic Resonances of the Easy-Axis van der Waals Antiferromagnet CrSBr. , 2022, Nano letters.

[8]  Hyun Ho Kim,et al.  The Magnetic Genome of Two-Dimensional van der Waals Materials , 2022, ACS nano.

[9]  M. Chou,et al.  Quantitative determination of interlayer electronic coupling at various critical points in bilayer MoS2 , 2022, Physical Review B.

[10]  A. Morpurgo,et al.  Dynamic magnetic crossover at the origin of the hidden-order in van der Waals antiferromagnet CrSBr , 2022, Nature Communications.

[11]  D. Berman,et al.  A three-stage magnetic phase transition revealed in ultrahigh-quality van der Waals magnet CrSBr , 2022, 2203.09582.

[12]  A. Morpurgo,et al.  Quasi‐1D Electronic Transport in a 2D Magnetic Semiconductor , 2022, Advanced materials.

[13]  Michael E. Ziebel,et al.  Exciton-coupled coherent magnons in a 2D semiconductor , 2022, Nature.

[14]  Xiaodong Xu,et al.  Reversible strain-induced magnetic phase transition in a van der Waals magnet , 2022, Nature Nanotechnology.

[15]  M. Orlita,et al.  Spatially resolved optical spectroscopy in extreme environment of low temperature, high magnetic fields and high pressure. , 2021, The Review of scientific instruments.

[16]  Xiaodong Xu,et al.  Interlayer electronic coupling on demand in a 2D magnetic semiconductor , 2021, Nature Materials.

[17]  P. Ajayan,et al.  Strong coupling and pressure engineering in WSe2–MoSe2 heterobilayers , 2020 .

[18]  Xiaodong Xu,et al.  Layered Antiferromagnetism Induces Large Negative Magnetoresistance in the van der Waals Semiconductor CrSBr , 2020, Advanced materials.

[19]  Kenji Watanabe,et al.  Observation of Magnetic Proximity Effect Using Resonant Optical Spectroscopy of an Electrically Tunable MoSe_{2}/CrBr_{3} Heterostructure. , 2020, Physical review letters.

[20]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[21]  S. Louie,et al.  Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.

[22]  Xiaodong Xu,et al.  Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics , 2017, Science Advances.

[23]  A. Marty,et al.  Electric Field-Induced Modification of Magnetism in Thin-Film Ferromagnets , 2007, Science.

[24]  H. Kahle,et al.  Magnetic properties of CrSBr , 1990 .

[25]  Schuller,et al.  Interfacial anisotropy in magnetic superlattices. , 1987, Physical review letters.

[26]  N. Mermin,et al.  Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models , 1966 .

[27]  Louis Néel,et al.  Antiferromagnetism and Ferrimagnetism , 1952 .