Parallel architecture and algorithms for space weather prediction – A review

A critical review is presented in this paper on parallel computing, including parallel algorithms and parallel architectures. Emphasis is laid on different interconnection networks, including recent efficient multi-mesh network. The role of parallel computing for design and analysis of adaptive sampling are pointed out. Different parallel computing platforms and their basic characteristics, along with some computing paradigms that are used in conjunction with adaptive designs are discussed. Some fundamental physical and numerical issues related to constructing modern numerical MHD codes for space weather prediction are outlined. Efficient execution of scientific simulations on high-performance parallel computers is focused. Scope for future development is also suggested.

[1]  J. Dawson,et al.  A three dimensional MHD model of the Earth’s magnetosphere , 1981 .

[2]  Bhabani P. Sinha,et al.  Multi-Mesh-an efficient topology for parallel processing , 1995, Proceedings of 9th International Parallel Processing Symposium.

[3]  Peter M. Kogge,et al.  Parallel Solution of Recurrence Problems , 1974, IBM J. Res. Dev..

[4]  Quentin F. Stout,et al.  Flexible Algorithms for Creating and Analyzing Adaptive Sampling Procedures , 1998 .

[5]  Quentin F. Stout Ultrafast Parallel Algorithms and Reconfigurable Meshes , 1992 .

[6]  J. Lyon,et al.  A comparison of global numerical simulation results to data for the January 27–28, 1992, Geospace Environment Modeling challenge event , 1998 .

[7]  K. Powell,et al.  Modeling of cometary X-rays caused by solar wind minor ions. , 1997, Science.

[8]  Quentin F. Stout,et al.  An adaptive MHD method for global space weather simulations , 2000 .

[9]  Vipin Kumar,et al.  Graph partitioning for high-performance scientific simulations , 2003 .

[10]  Vipin Kumar,et al.  Multilevel Algorithms for Multi-Constraint Graph Partitioning , 1998, Proceedings of the IEEE/ACM SC98 Conference.

[11]  Viktor K. Prasanna,et al.  An Optimal Sorting Algorithm on Reconfigurable Mesh , 1995, J. Parallel Distributed Comput..

[12]  John Lyon,et al.  A simulation study of east-west IMF effects on the magnetosphere , 1981 .

[13]  Larry Rudolph,et al.  Parallel Prefix on Fully Connected Direct Connection Machines , 1986, ICPP.

[14]  Bhabani P. Sinha,et al.  An Efficient Sorting Algorithm on the Multi-Mesh Network , 1997, IEEE Trans. Computers.

[15]  P. Roe,et al.  A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics , 1999 .

[16]  Quentin F. Stout,et al.  A parallel solution-adaptive scheme for ideal magnetohydrodynamics , 1999 .

[17]  Uzi Vishkin,et al.  Deterministic Sampling - A New Technique for Fast Pattern Matching , 1991, SIAM J. Comput..

[18]  Dionysios I. Reisis,et al.  Parallel Computations on Reconfigurable Meshes , 1993, IEEE Trans. Computers.

[19]  Uzi Vishkin,et al.  Towards a theory of nearly constant time parallel algorithms , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[20]  T. Tajima,et al.  Global simulations of the three‐dimensional magnetosphere , 1981 .

[21]  Richard Cole,et al.  Faster Optimal Parallel Prefix Sums and List Ranking , 2011, Inf. Comput..

[22]  Quentin F. Stout,et al.  Optimal few-stage designs , 2002 .

[23]  M. Ashour‐Abdalla,et al.  The Geospace Environment Modeling Grand Challenge: Results from a Global Geospace Circulation Model , 1998 .

[24]  A. B. Bhattacharya,et al.  A multilayer fuzzy neural network approach for cloud classification , 2003 .

[25]  Quentin F. Stout,et al.  Using Path Induction to Evaluate Sequential Allocation Procedures , 1999, SIAM J. Sci. Comput..

[26]  Kenneth G. Powell,et al.  Interaction of Mercury with the Solar Wind , 1998 .

[27]  Michael L. Goodman,et al.  A three-dimensional, iterative mapping procedure for the implementation of an ionosphere-magnetosphere anisotropic Ohm’s law boundary condition in global magnetohydrodynamic simulations , 1995 .

[28]  Achim Basermann,et al.  Dynamic multi-partitioning for parallel finite element applications , 2001, PARCO.

[29]  Vijay P. Kumar,et al.  Analyzing Scalability of Parallel Algorithms and Architectures , 1994, J. Parallel Distributed Comput..

[30]  Mikhail J. Atallah,et al.  Efficient Parallel Solutions to Some Geometric Problems , 1986, J. Parallel Distributed Comput..

[31]  Johan Håstad,et al.  Optimal bounds for decision problems on the CRCW PRAM , 1987, STOC.

[32]  On Europa's magnetospheric interaction : A MHD simulation of the E4 flyby , 1999 .

[33]  Steven J. Plimpton,et al.  A Parallel Rendezvous Algorithm for Interpolation Between Multiple Grids , 1998 .

[34]  Clinton P. T. Groth,et al.  3D multi‐fluid MHD studies of the solar wind interaction with Mars , 1999 .

[35]  Yen-Chun Lin,et al.  Efficient parallel prefix algorithms on fully connected message-passing computers , 1996, Proceedings of 3rd International Conference on High Performance Computing (HiPC).

[36]  K. Powell,et al.  Magnetospheric configuration for Parker-spiral IMF conditions: Results of a 3D AMR MHD simulation , 2000 .

[37]  K. Powell,et al.  Io's plasma environment during the Galileo flyby: Global three‐dimensional MHD modeling with adaptive mesh refinement , 1998 .

[38]  John Lyon,et al.  A time dependent three‐dimensional simulation of the Earth's magnetosphere: Reconnection events , 1982 .

[39]  Mikhail J. Atallah,et al.  Efficient Parallel Solutions to Geometric Problems , 1985, ICPP.

[40]  Michael J. Flynn,et al.  Some Computer Organizations and Their Effectiveness , 1972, IEEE Transactions on Computers.

[41]  F. Leighton,et al.  Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes , 1991 .

[42]  Russ Miller,et al.  Algorithmic Techniques for Networks of Processors , 1999, Algorithms and Theory of Computation Handbook.

[43]  Bhabani P. Sinha,et al.  A New Network Topology with Multiple Meshes , 1999, IEEE Trans. Computers.

[44]  Charles E. Leiserson,et al.  Fat-trees: Universal networks for hardware-efficient supercomputing , 1985, IEEE Transactions on Computers.

[45]  Kenneth G. Powell,et al.  Three‐dimensional multiscale MHD model of cometary plasma environments , 1996 .

[46]  Quentin F. Stout,et al.  Ultra-fast expected time parallel algorithms , 1991, SODA '91.

[47]  S. Lakshmivarahan,et al.  Parallel computing using the prefix problem , 1994 .

[48]  Selim G. Akl,et al.  Design and analysis of parallel algorithms , 1985 .

[49]  J. Lyon,et al.  Global numerical simulation of the growth phase and the expansion onset for a substorm observed by Viking , 1995 .

[50]  K. Powell,et al.  The induced magnetosphere of comet Halley: 4. Comparison of in situ observations and numerical simulations , 1999 .

[51]  Christos Xenophontos,et al.  Application of the p‐version of the finite element method to elastoplasticity with localization of deformation , 1999 .

[52]  Gary L. Miller,et al.  Deterministic Parallel List Ranking , 1988, AWOC.

[53]  George Karypis,et al.  Graph partitioning for emerging scientific simulations , 1999 .

[54]  Rajesh K. Mansharamani Parallel Computing Using the Prefix Problem , 1995 .

[55]  Michael J. Flynn,et al.  Very high-speed computing systems , 1966 .

[56]  T. Tanaka,et al.  Generation mechanisms for magnetosphere-ionosphere current systems deduced from a three-dimensional MHD simulation of the solar wind-magnetosphere-ionosphere coupling processes , 1995 .

[57]  Luigi Cinque,et al.  Parallel prefix computation on a pyramid computer , 1995, Pattern Recognit. Lett..

[58]  Philip D. MacKenzie,et al.  Load balancing requires Ω(log * n ) expected time , 1992, SODA 1992.

[59]  Jörg Stiller,et al.  A New Approach for Parallel Multigrid Adaption , 1999, PPSC.

[60]  Kenneth G. Powell,et al.  A three-dimensional MHD study of solar wind mass loading processes at Venus: Effects of photoionization, electron impact ionization, and charge exchange , 1998 .