Microbial conversion of sugars from plant biomass to lactic acid or ethanol.

Concerns for our environment and unease with our dependence on foreign oil have renewed interest in converting plant biomass into fuels and 'green' chemicals. The volume of plant matter available makes lignocellulose conversion desirable, although no single isolated organism has been shown to depolymerize lignocellulose and efficiently metabolize the resulting sugars into a specific product. This work reviews selected chemicals and fuels that can be produced from microbial fermentation of plant-derived cell-wall sugars and directed engineering for improvement of microbial biocatalysts. Lactic acid and ethanol production are highlighted, with a focus on engineered Escherichia coli.

[1]  Jack T. Pronk,et al.  Homofermentative Lactate Production Cannot Sustain Anaerobic Growth of Engineered Saccharomyces cerevisiae: Possible Consequence of Energy-Dependent Lactate Export , 2004, Applied and Environmental Microbiology.

[2]  N. Lewis,et al.  Phenolic constituents of plant cell walls and wall biodegradability. , 1989 .

[3]  T. Jeffries,et al.  Engineering yeasts for xylose metabolism. , 2006, Current opinion in biotechnology.

[4]  M. Leisola,et al.  Metabolic Engineering of Lactobacillus helveticus CNRZ32 for Production of Purel-(+)-Lactic Acid , 2000, Applied and Environmental Microbiology.

[5]  Harold L Drake,et al.  Physiology of the thermophilic acetogen Moorella thermoacetica. , 2004, Research in microbiology.

[6]  Mark A. Eiteman,et al.  Hydrolysis of Tifton 85 bermudagrass in a pressurized batch hot water reactor. , 2008 .

[7]  C. Wyman Handbook on bioethanol : production and utilization , 1996 .

[8]  L. Ingram,et al.  Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production , 1998, Journal of Industrial Microbiology and Biotechnology.

[9]  P. Kötter,et al.  Xylose fermentation by Saccharomyces cerevisiae , 1993, Applied Microbiology and Biotechnology.

[10]  Shengde Zhou,et al.  Engineering a native homoethanol pathway in Escherichia coli B for ethanol production , 2008, Biotechnology Letters.

[11]  J. Gregory Zeikus,et al.  Prospects for a bio-based succinate industry , 2007, Applied Microbiology and Biotechnology.

[12]  B. Dien,et al.  Stabilization of pet operon plasmids and ethanol production in Escherichia coli strains lacking lactate dehydrogenase and pyruvate formate-lyase activities , 1996, Applied and environmental microbiology.

[13]  James D. McMillan,et al.  Pretreatment of lignocellulosic biomass , 1994 .

[14]  Daniel Mailly,et al.  Leaf litter quality and decomposition rates of yellow birch and sugar maple seedlings grown in mono-culture and mixed-culture pots at three soil fertility levels , 2004, Trees.

[15]  L. Ingram,et al.  Saccharification and fermentation of Sugar Cane bagasse by Klebsiella oxytoca P2 containing chromosomally integrated genes encoding the Zymomonas mobilis ethanol pathway , 1994, Biotechnology and bioengineering.

[16]  L. Ingram,et al.  Reduction of furfural to furfuryl alcohol by ethanologenic strains of bacteria and its effect on ethanol production from xylose , 2002, Applied biochemistry and biotechnology.

[17]  D. Clark,et al.  The fermentation pathways of Escherichia coli. , 1989, FEMS microbiology reviews.

[18]  Georg A. Sprenger,et al.  Pentose metabolism in Zymomonas mobilis wild-type and recombinant strains , 1992, Applied Microbiology and Biotechnology.

[19]  L. Ingram,et al.  Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. , 1999, Biotechnology and bioengineering.

[20]  Jordan B. Peterson,et al.  Fermentation of sugarbeet pulp for ethanol production using bioengineered Klebsiella oxytoca strain P2 , 2001 .

[21]  B. Dien,et al.  Recombinant Escherichia coli engineered for production of L-lactic acid from hexose and pentose sugars , 2001, Journal of Industrial Microbiology and Biotechnology.

[22]  L. Ingram,et al.  Parametric studies of ethanol production form xylose and other sugars by recombinant Escherichia coli , 1991, Biotechnology and bioengineering.

[23]  K. Shanmugam,et al.  Fermentation of 10% (w/v) Sugar to D(−)-Lactate by Engineered Escherichia coli B , 2005, Biotechnology Letters.

[24]  B. Hahn-Hägerdal,et al.  Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase , 1996, Applied and environmental microbiology.

[25]  H. Lawford,et al.  The effect of glucose on high-level xylose fermentations by recombinant Zymomonas in batch and fed-batch fermentations , 1999 .

[26]  S. Ehrlich,et al.  The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. , 2001, Genome research.

[27]  T. W. Jeffries,et al.  Bacteria engineered for fuel ethanol production: current status , 2003, Applied Microbiology and Biotechnology.

[28]  M. Sedlák,et al.  Genetically EngineeredSaccharomycesYeasts for Conversion of Cellulosic Biomass to Environmentally Friendly Transportation Fuel Ethanol , 2000 .

[29]  Lilia Alberghina,et al.  Replacement of a Metabolic Pathway for Large-Scale Production of Lactic Acid from Engineered Yeasts , 1999, Applied and Environmental Microbiology.

[30]  Min Zhang,et al.  Cofermentation of glucose, xylose, and arabinose by genomic DNA-integrated xylose/arabinose fermenting strain of Zymomonas mobilis AX101 , 2002, Applied biochemistry and biotechnology.

[31]  A. Faaij,et al.  Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term , 2005 .

[32]  M. Sedlák,et al.  Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co‐fermentation by a recombinant Saccharomyces yeast , 2004, Yeast.

[33]  B. Dale,et al.  Ethanol production from AFEX pretreated corn fiber by recombinant bacteria , 1996, Biotechnology Letters.

[34]  L. Ingram,et al.  Ethanol production from hemicellulose hydrolysates of agricultural residues using genetically engineeredEscherichia coli strain KO11 , 2005, Journal of Industrial Microbiology.

[35]  Katherine H. Huang,et al.  Comparative genomics of the lactic acid bacteria , 2006, Proceedings of the National Academy of Sciences.

[36]  E. Baldwin,et al.  Fermentation of galacturonic acid and other sugars in orange peel hydrolysates by the ethanologenic strain of Escherichia coli , 1994, Biotechnology Letters.

[37]  T. Jeffries,et al.  Pretreatments for converting wood into paper and chemicals , 2007 .

[38]  L. Ingram,et al.  Conversion of Mixed Waste Office Paper to Ethanol by Genetically Engineered Klebsiella oxytoca Strain P2 , 1995 .

[39]  Charles E Wyman,et al.  Potential Synergies and Challenges in Refining Cellulosic Biomass to Fuels, Chemicals, and Power , 2003, Biotechnology progress.

[40]  Y. Y. Lee,et al.  High-yield fermentation of pentoses into lactic acid , 2000, Applied biochemistry and biotechnology.

[41]  Jean-Philippe Delgenès,et al.  Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae , 1996 .

[42]  Pradip K. Roychoudhury,et al.  L (+) lactic acid fermentation and its product polymerization , 2004 .

[43]  W. V. van Zyl,et al.  Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054. , 2003, FEMS yeast research.

[44]  L. Ingram,et al.  Fermentation of Crystalline Cellulose to Ethanol by Klebsiella oxytoca Containing Chromosomally Integrated Zymomonas mobilis Genes , 1993 .

[45]  T. Leathers,et al.  Lactobacillus buchneri strain NRRL B-30929 converts a concentrated mixture of xylose and glucose into ethanol and other products , 2008, Journal of Industrial Microbiology & Biotechnology.

[46]  L. Ingram,et al.  Ethanol production from lignocellulose using genetically engineered bacteria , 1998 .

[47]  R. Bothast,et al.  Biotechnological processes for conversion of corn into ethanol , 2005, Applied Microbiology and Biotechnology.

[48]  J. Pronk,et al.  Development of efficient xylose fermentation in Saccharomyces cerevisiae: xylose isomerase as a key component. , 2007, Advances in biochemical engineering/biotechnology.

[49]  R. Visser,et al.  If Homogalacturonan Were a Side Chain of Rhamnogalacturonan I. Implications for Cell Wall Architecture1 , 2003, Plant Physiology.

[50]  Yan Lin,et al.  Ethanol fermentation from biomass resources: current state and prospects , 2006, Applied Microbiology and Biotechnology.

[51]  Peter L. Rogers,et al.  Evaluation of recombinant strains of Zymomonas mobilis for ethanol production from glucose/xylose media , 1999 .

[52]  W. V. Guimarães,et al.  Fermentation of sweet whey by recombinant Escherichia coli KO11 , 2000 .

[53]  T. W. Jeffries,et al.  Metabolic engineering for improved fermentation of pentoses by yeasts , 2004, Applied Microbiology and Biotechnology.

[54]  J. C. Preez,et al.  Process parameters and environmental factors affecting d-xylose fermentation by yeasts , 1994 .

[55]  B. Hahn-Hägerdal,et al.  Towards industrial pentose-fermenting yeast strains , 2007, Applied Microbiology and Biotechnology.

[56]  B. Dien,et al.  Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass , 2000 .

[57]  Jae-Gu Pan,et al.  Homofermentative Production of d- orl-Lactate in Metabolically Engineered Escherichia coli RR1 , 1999, Applied and Environmental Microbiology.

[58]  Jay J. Cheng,et al.  Dilute acid pretreatment of rye straw and bermudagrass for ethanol production. , 2005, Bioresource technology.

[59]  M. Bousmina,et al.  Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world , 2005 .

[60]  Ashwini K. Agrawal,et al.  Advances in the Production of Poly(Lactic Acid) Fibers. A Review , 2003 .

[61]  B. Pollet,et al.  Abiotic and enzymatic degradation of wheat straw cell wall: a biochemical and ultrastructural investigation. , 2000, Journal of biotechnology.

[62]  L. Ingram,et al.  Efficient fermentation of Pinus sp. acid hydrolysates by an ethanologenic strain of Escherichia coli , 1992, Applied and environmental microbiology.

[63]  Jing-Ke Weng,et al.  Improvement of biomass through lignin modification. , 2008, The Plant journal : for cell and molecular biology.

[64]  Alison M. Smith Prospects for increasing starch and sucrose yields for bioethanol production. , 2008, The Plant journal : for cell and molecular biology.

[65]  K. Shanmugam,et al.  Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II , 1991, Applied and environmental microbiology.

[66]  K. Paustian,et al.  Energy and Environmental Aspects of Using Corn Stover for Fuel Ethanol , 2003 .

[67]  Jack T Pronk,et al.  High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? , 2003, FEMS yeast research.

[68]  Ali Demirci,et al.  Enhanced production ofd(−)-lactic acid by mutants ofLactobacillus delbrueckii ATCC 9649 , 1992, Journal of Industrial Microbiology.

[69]  Charlotte K. Williams,et al.  The Path Forward for Biofuels and Biomaterials , 2006, Science.

[70]  Ramaraj Boopathy,et al.  Biotransformation of furfural and 5-hydroxymethyl furfural by enteric bacteria , 1993, Journal of Industrial Microbiology.

[71]  Markus Pauly,et al.  Cell-wall carbohydrates and their modification as a resource for biofuels. , 2008, The Plant journal : for cell and molecular biology.

[72]  Min Zhang,et al.  Cofermentation of glucose, xylose, and arabinose by genomic DNA-integrated xylose/arabinose fermenting strain of Zymomonas mobilis AX101 , 2002 .

[73]  K. Shanmugam,et al.  Production of Optically Pure d-Lactic Acid in Mineral Salts Medium by Metabolically Engineered Escherichia coli W3110 , 2003, Applied and Environmental Microbiology.

[74]  P. Loubière,et al.  Physiology of pyruvate metabolism in Lactococcus lactis , 1996, Antonie van Leeuwenhoek.

[75]  M. Penttilä,et al.  Efficient Production of l-Lactic Acid from Xylose by Pichia stipitis , 2006, Applied and Environmental Microbiology.

[76]  Katsuhiko Kitamoto,et al.  Genetically Engineered Wine Yeast Produces a High Concentration of l-Lactic Acid of Extremely High Optical Purity , 2005, Applied and Environmental Microbiology.

[77]  J. Doran,et al.  Fermentations of pectin-rich biomass with recombinant bacteria to produce fuel ethanol. , 2000, Applied biochemistry and biotechnology.

[78]  C. Skory,et al.  Isolation and Expression of Lactate Dehydrogenase Genes from Rhizopus oryzae , 2000, Applied and Environmental Microbiology.

[79]  Rathin Datta,et al.  Lactic acid: recent advances in products, processes and technologies — a review , 2006 .

[80]  M. Galbe,et al.  Bio-ethanol--the fuel of tomorrow from the residues of today. , 2006, Trends in biotechnology.

[81]  J. Nielsen,et al.  Metabolic Engineering of Saccharomyces cerevisiae , 2000, Microbiology and Molecular Biology Reviews.

[82]  K. Shanmugam,et al.  Methylglyoxal Bypass Identified as Source of Chiral Contamination in l(+) and d(−)-lactate Fermentations by Recombinant Escherichia coli , 2006, Biotechnology Letters.

[83]  Shangtian Yang,et al.  Acetic Acid Production from Fructose by Clostridiumformicoaceticum Immobilized in a Fibrous‐Bed Bioreactor , 1998, Biotechnology progress.

[84]  M. Penttilä,et al.  Production of ethanol from L-arabinose by Saccharomyces cerevisiae containing a fungal L-arabinose pathway. , 2003, FEMS yeast research.

[85]  Bart Pieterse,et al.  Unravelling the multiple effects of lactic acid stress on Lactobacillus plantarum by transcription profiling. , 2005, Microbiology.

[86]  Foster A. Agblevor,et al.  Characterization and fermentation of steam exploded cotton gin waste , 2001 .

[87]  Chi-Li Liu,et al.  Efficient Homolactic Fermentation byKluyveromyces lactis Strains Defective in Pyruvate Utilization and Transformed with the HeterologousLDH Gene , 2001, Applied and Environmental Microbiology.

[88]  Venkatesh Balan,et al.  Ethanolic fermentation of hydrolysates from ammonia fiber expansion (AFEX) treated corn stover and distillers grain without detoxification and external nutrient supplementation , 2008, Biotechnology and bioengineering.

[89]  C. Wyman,et al.  Features of promising technologies for pretreatment of lignocellulosic biomass. , 2005, Bioresource technology.

[90]  P. Rogers,et al.  Characterization of a high-productivity recombinant strain of Zymomonas mobilis for ethanol production from glucose/xylose mixtures. , 2000, Applied biochemistry and biotechnology.

[91]  Anneli Petersson,et al.  Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae , 2007 .

[92]  Shengde Zhou,et al.  Functional Replacement of the Escherichia colid-(−)-Lactate Dehydrogenase Gene (ldhA) with the l-(+)-Lactate Dehydrogenase Gene (ldhL) from Pediococcus acidilactici , 2003, Applied and Environmental Microbiology.

[93]  J. Pronk,et al.  Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. , 2004, FEMS yeast research.

[94]  L. Ingram,et al.  Conversion of hydrolysates of corn cobs and hulls into ethanol by recombinantEscherichia coli B containing integrated genes for ethanol production , 1992, Biotechnology Letters.

[95]  S. Hong,et al.  Fermentative production of chemicals that can be used for polymer synthesis. , 2003, Macromolecular bioscience.

[96]  J. Nielsen,et al.  Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration , 2001, Applied Microbiology and Biotechnology.

[97]  S. Shioya,et al.  Microaeration enhances productivity of bioethanol from hydrolysate of waste house wood using ethanologenic Escherichia coli KO11. , 2007, Journal of bioscience and bioengineering.

[98]  L. Ingram,et al.  Ethanol production from dilute acid hydrolysate of rice hulls using genetically engineered Escherichia coli , 1998, Biotechnology Letters.

[99]  S. Varanasi,et al.  Enhanced ethanol fermentation of brewery wastewater using the genetically modified strain E. coli KO11 , 2007, Applied Microbiology and Biotechnology.

[100]  Inês Conceição Roberto,et al.  Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. , 2004, Bioresource technology.

[101]  V. Zverlov,et al.  Biofuels from microbes , 2007, Applied Microbiology and Biotechnology.

[102]  Min Zhang,et al.  Metabolic Engineering of a Pentose Metabolism Pathway in Ethanologenic Zymomonas mobilis , 1995, Science.

[103]  D. T. Jones,et al.  Acetone-butanol fermentation revisited. , 1986, Microbiological reviews.

[104]  A Martinez,et al.  Enteric Bacterial Catalysts for Fuel Ethanol Production , 1999, Biotechnology progress.

[105]  Hofvendahl,et al.  Factors affecting the fermentative lactic acid production from renewable resources(1). , 2000, Enzyme and microbial technology.

[106]  Leif J. Jönsson,et al.  Influence of lignocellulose-derived aromatic compounds on oxygen-limited growth and ethanolic fermentation by Saccharomyces cerevisiae , 2000, Applied biochemistry and biotechnology.

[107]  E. Sonnleitner,et al.  Functional replacement of the Escherichia coli hfq gene by the homologue of Pseudomonas aeruginosa. , 2002, Microbiology.

[108]  K. Shanmugam,et al.  Construction of an Escherichia coli K-12 Mutant for Homoethanologenic Fermentation of Glucose or Xylose without Foreign Genes , 2007, Applied and Environmental Microbiology.

[109]  L. Lynd,et al.  Consolidated bioprocessing of cellulosic biomass: an update. , 2005, Current opinion in biotechnology.

[110]  Ashok Pandey,et al.  Metabolic engineering approaches for lactic acid production , 2006 .

[111]  J. D. McMillan,et al.  Conversion of hemicellulose hydrolyzates to ethanol , 1994 .

[112]  S. Hall,et al.  Two different pathways for D-xylose metabolism and the effect of xylose concentration on the yield coefficient of L-lactate in mixed-acid fermentation by the lactic acid bacterium Lactococcus lactis IO-1 , 2002, Applied Microbiology and Biotechnology.

[113]  Jack T Pronk,et al.  Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. , 2005, FEMS yeast research.

[114]  Ho,et al.  Expression of E. coli araBAD operon encoding enzymes for metabolizing L-arabinose in Saccharomyces cerevisiae. , 2001, Enzyme and microbial technology.

[115]  Liliana Serna Cock,et al.  Lactic acid production by a strain of Lactococcus lactis subs lactis isolated from sugar cane plants , 2006 .