Efficient functional bioinformatics tools: towards understanding biological processes

Experimental high-throughput techniques in biology are generating large amounts of data related to genes and proteins at different levels. The functional analysis of such datasets is a necessary key step in their interpretation. In this contribution we review different methodologies and applications for functional bioinformatics in the context of automated data and text analysis in

[1]  Purvesh Khatri,et al.  Ontological analysis of gene expression data: current tools, limitations, and open problems , 2005, Bioinform..

[2]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[3]  Dennis B. Troup,et al.  NCBI GEO: archive for high-throughput functional genomic data , 2008, Nucleic Acids Res..

[4]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Francisco Tirado,et al.  GeneCodis: interpreting gene lists through enrichment analysis and integration of diverse biological information , 2009, Nucleic Acids Res..

[6]  J. Dopazo Functional interpretation of microarray experiments. , 2006, Omics : a journal of integrative biology.

[7]  Pablo Tamayo,et al.  Metagenes and molecular pattern discovery using matrix factorization , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Jonathan D. Wren,et al.  Shared relationship analysis: ranking set cohesion and commonalities within a literature-derived relationship network , 2004, Bioinform..

[9]  Hagit Shatkay,et al.  Mining the Biomedical Literature in the Genomic Era: An Overview , 2003, J. Comput. Biol..

[10]  W. Ansorge Next-generation DNA sequencing techniques. , 2009, New biotechnology.

[11]  Francisco Tirado,et al.  SENT: semantic features in text , 2009, Nucleic Acids Res..

[12]  Alfonso Valencia,et al.  Implementing the iHOP concept for navigation of biomedical literature , 2005, ECCB/JBI.

[13]  Yuan Gao,et al.  Improving molecular cancer class discovery through sparse non-negative matrix factorization , 2005 .

[14]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[15]  T. Jenssen,et al.  A literature network of human genes for high-throughput analysis of gene expression , 2001 .

[16]  Petri Törönen,et al.  Theme discovery from gene lists for identification and viewing of multiple functional groups , 2005, BMC Bioinformatics.

[17]  José María Carazo,et al.  CentrosomeDB: a human centrosomal proteins database , 2008, Nucleic Acids Res..

[18]  D. Chaussabel,et al.  Mining microarray expression data by literature profiling , 2002, Genome Biology.

[19]  Guoli Wang,et al.  LS-NMF: A modified non-negative matrix factorization algorithm utilizing uncertainty estimates , 2006, BMC Bioinformatics.

[20]  Erik M. van Mulligen,et al.  Co-occurrence based meta-analysis of scientific texts: retrieving biological relationships between genes , 2005, Bioinform..

[21]  Francisco Tirado,et al.  Modulating the Expression of Disease Genes with RNA-Based Therapy , 2006, BMC Bioinformatics.

[22]  José María Carazo,et al.  ChIPCodis: mining complex regulatory systems in yeast by concurrent enrichment analysis of chip-on-chip data , 2008, Bioinform..

[23]  José María Carazo,et al.  Engene: the processing and exploratory analysis of gene expression data , 2003, Bioinform..

[24]  Elaine R Mardis,et al.  New strategies and emerging technologies for massively parallel sequencing: applications in medical research , 2009, Genome Medicine.

[25]  Rainer Breitling,et al.  Biologically valid linear factor models of gene expression , 2004, Bioinform..

[26]  Xiaoxu Han Cancer molecular pattern discovery by subspace consensus kernel classification. , 2007, Computational systems bioinformatics. Computational Systems Bioinformatics Conference.

[27]  Maurice Bouwhuis,et al.  CoPub: a literature-based keyword enrichment tool for microarray data analysis , 2008, Nucleic Acids Res..

[28]  T. Jenssen,et al.  A literature network of human genes for high-throughput analysis of gene expression , 2001, Nature Genetics.

[29]  Paul A Clemons,et al.  The Connectivity Map: Using Gene-Expression Signatures to Connect Small Molecules, Genes, and Disease , 2006, Science.

[30]  Miguel A. Andrade-Navarro,et al.  Automatic Extraction of Biological Information from Scientific Text: Protein-Protein Interactions , 1999, ISMB.

[31]  Francisco Tirado,et al.  bioNMF: a web-based tool for nonnegative matrix factorization in biology , 2008, Nucleic Acids Res..

[32]  Hagit Shatkay,et al.  Discovering semantic features in the literature: a foundation for building functional associations , 2006, BMC Bioinformatics.

[33]  R. Altman,et al.  Using text analysis to identify functionally coherent gene groups. , 2002, Genome research.

[34]  L. Chin,et al.  High-resolution genomic profiles define distinct clinico-pathogenetic subgroups of multiple myeloma patients. , 2006, Cancer cell.

[35]  Dietrich Lehmann,et al.  Nonsmooth nonnegative matrix factorization (nsNMF) , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  R. Nogales-Cadenas,et al.  Proteopathogen, a protein database for studying Candida albicans – host interaction , 2009, Proteomics.

[37]  Huanming Yang,et al.  SNP detection for massively parallel whole-genome resequencing. , 2009, Genome research.

[38]  Hyunsoo Kim,et al.  Sparse Non-negative Matrix Factorizations via Alternating Non-negativity-constrained Least Squares , 2006 .

[39]  José María Carazo,et al.  Moara: a Java library for extracting and normalizing gene and protein mentions , 2010, BMC Bioinformatics.

[40]  Liisa Holm,et al.  Sensitive pattern discovery with 'fuzzy' alignments of distantly related proteins , 2003, ISMB.

[41]  Yoshihiro Yamanishi,et al.  KEGG for linking genomes to life and the environment , 2007, Nucleic Acids Res..

[42]  Philip M. Kim,et al.  Subsystem identification through dimensionality reduction of large-scale gene expression data. , 2003, Genome research.

[43]  Chengyu Liu,et al.  Biclustering of gene expression data by non-smooth non-negative matrix factorization , 2010 .

[44]  Brad T. Sherman,et al.  Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists , 2008, Nucleic acids research.

[45]  Xuehui Huang,et al.  High-throughput genotyping by whole-genome resequencing. , 2009, Genome research.

[46]  J. Carazo,et al.  GENECODIS: a web-based tool for finding significant concurrent annotations in gene lists , 2007, Genome Biology.

[47]  Gabor T. Marth,et al.  EagleView: a genome assembly viewer for next-generation sequencing technologies. , 2008, Genome research.

[48]  José María Carazo,et al.  BMC Bioinformatics BioMed Central Methodology article Integrated analysis of gene expression by association rules discovery , 2022 .

[49]  Carl Virtanen,et al.  Two subclasses of lung squamous cell carcinoma with different gene expression profiles and prognosis identified by hierarchical clustering and non-negative matrix factorization , 2005, Oncogene.