A Haptic Interaction Method Using Visual Information and Physically Based Modeling

Haptic feedback can be used to sense a physical environment at a remote site in order to overcome spatial or scale barriers in telemanipulation. The aim of this paper is to develop a haptic interaction method for a deformable object manipulation system by means of image processing and physically based modeling techniques. The interaction forces between the instrument driven by a haptic device and a deformable object are inferred in real time based on the visual information from a slave environment without force sensor. A physically based model of the deformable object is constructed by integrating the geometric information from vision, a priori knowledge of the object mechanical properties, and a predefined coordinate system of the slave environment. The forces are then derived from the model, while a boundary condition is updated based on the images (a tool-tip position tracking). In order to demonstrate the applicability and effectiveness of the proposed algorithm, macro- and microscale experimental systems were built and equipped with a telemanipulation system and a commercial haptic display. The proposed method was verified using silicone (macroscale) and zebrafish embryos (microscale).

[1]  Tobias Ortmaier,et al.  Toward High-Fidelity Telepresence in Space and Surgery Robotics , 2004, Presence: Teleoperators & Virtual Environments.

[2]  Masatoshi Ishikawa,et al.  Real-time system for virtually touching objects in the real world using modality transformation from images to haptic information , 1999, Systems and Computers in Japan.

[3]  Xinyu Liu,et al.  Real-Time High-Accuracy Micropipette Aspiration for Characterizing Mechanical Properties of Biological Cells , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[4]  E. Chen,et al.  Force feedback for surgical simulation , 1998, Proc. IEEE.

[5]  Bradley J. Nelson,et al.  Microrobotics for Molecular Biology: Manipulating Deformable Objects at the Microscale , 2003, ISRR.

[6]  William L. Cleghorn,et al.  Vision-based measurement of microassembly forces , 2006 .

[7]  Yu Sun,et al.  Investigating chorion softening of zebrafish embryos with a microrobotic force sensing system. , 2005, Journal of biomechanics.

[8]  Alois Knoll,et al.  Haptic Feedback in a Telepresence System for Endoscopic Heart Surgery , 2007, PRESENCE: Teleoperators and Virtual Environments.

[9]  Pasi Kallio,et al.  Manipulation of Living Biological Cells : Challenges in Automation , 2003 .

[10]  Christopher R. Wagner,et al.  The Benefit of Force Feedback in Surgery: Examination of Blunt Dissection , 2007, PRESENCE: Teleoperators and Virtual Environments.

[11]  Hideki Hashimoto,et al.  Development of micromanipulator and haptic interface for networked micromanipulation , 2001 .

[12]  Metin Sitti,et al.  Teleoperated touch feedback from the surfaces at the nanoscale: modeling and experiments , 2003 .

[13]  Septimiu E. Salcudean,et al.  Needle insertion modeling and simulation , 2003, IEEE Trans. Robotics Autom..

[14]  Dinesh K. Pai,et al.  Multiresolution green's function methods for interactive simulation of large-scale elastostatic objects , 2003, TOGS.

[15]  Hervé Delingette,et al.  Toward realistic soft-tissue modeling in medical simulation , 1998, Proc. IEEE.

[16]  Mamoru Mitsuishi,et al.  Force-Feedback Augmentation Modes in the Laparoscopic Minimally Invasive Telesurgical System , 2007 .

[17]  Yuechao Wang,et al.  Sensor Referenced Real-Time Videolization of Atomic Force Microscopy for Nanomanipulations , 2008, IEEE/ASME Transactions on Mechatronics.

[18]  X. Y. Liu,et al.  Contact Detection in Microrobotic Manipulation , 2007, Int. J. Robotics Res..

[19]  Masatoshi Ishikawa,et al.  Microrobotic visual control of motile cells using high-speed tracking system , 2005, IEEE Transactions on Robotics.

[20]  John Kenneth Salisbury,et al.  Haptic rendering: programming touch interaction with virtual objects , 1995, I3D '95.

[21]  J.K. Aggarwal,et al.  Correspondence processes in dynamic scene analysis , 1981, Proceedings of the IEEE.

[22]  Peter C. Y. Chen,et al.  Force Sensing and Control in Micromanipulation , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[23]  John F. Canny,et al.  Haptic interaction with global deformations , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[24]  Cagatay Basdogan,et al.  Haptic Manipulation of Microspheres Using Optical Tweezers , 2006, 2006 14th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems.

[25]  Stephane Cotin,et al.  Truth cube: Establishing physical standards for soft tissue simulation , 2003, Medical Image Anal..

[26]  P. Dario,et al.  From "macro" to "micro" manipulation: models and experiments , 2004, IEEE/ASME Transactions on Mechatronics.

[27]  John Kenneth Salisbury,et al.  Haptic Rendering: Introductory Concepts , 2004, IEEE Computer Graphics and Applications.

[28]  Yanhong Luo,et al.  Fusing force and vision feedback for manipulating deformable objects , 2001, J. Field Robotics.

[29]  B. Nelson,et al.  Mechanical analysis of chorion softening in prehatching stages of zebrafish embryos , 2006, IEEE Transactions on NanoBioscience.

[30]  Mehdi Ammi,et al.  Evaluation of 3D Pseudo-Haptic Rendering using Vision for Cell Micromanipulation , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[31]  Ioannis A. Kakadiaris,et al.  Elastically Adaptive Deformable Models , 1996, ECCV.

[32]  Bradley J. Nelson,et al.  Biological Cell Injection Using an Autonomous MicroRobotic System , 2002, Int. J. Robotics Res..

[33]  Mariano Alcañiz Raya,et al.  Real-time deformable models for surgery simulation: a survey , 2005, Comput. Methods Programs Biomed..

[34]  G. K. Ananthasuresh,et al.  Vision-based sensing of forces in elastic objects , 2001 .

[35]  Mubarak Shah,et al.  A Fast algorithm for active contours and curvature estimation , 1992, CVGIP Image Underst..

[36]  F. Janabi-Sharifi,et al.  Internet-based teleoperation of a mobile robot using shared impedance control scheme: a pilot study , 2005, Proceedings of 2005 IEEE Conference on Control Applications, 2005. CCA 2005..

[37]  Dmitry B. Goldgof,et al.  A Method for Increasing Precision and Reliability of Elasticity Analysis in Complicated Burn Scar Cases , 2000, Int. J. Pattern Recognit. Artif. Intell..

[38]  Xinyu Liu,et al.  Vision-based cellular force measurement using an elastic microfabricated device , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[39]  Bradley J. Nelson,et al.  Vision-based force measurement , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Cagatay Basdogan,et al.  Efficient Point-Based Rendering Techniques for Haptic Display of Virtual Objects , 1999, Presence.

[41]  Thomas H. Massie,et al.  The PHANToM Haptic Interface: A Device for Probing Virtual Objects , 1994 .

[42]  Jaydev P. Desai,et al.  A vision-based approach for estimating contact forces: Applications to robot-assisted surgery , 2005 .

[43]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[44]  Michaël Gauthier,et al.  Capillary Force Disturbances on a Partially Submerged Cylindrical Micromanipulator , 2007, IEEE Transactions on Robotics.

[45]  Jaydev P. Desai,et al.  Evaluating the Effect of Force Feedback in Cell Injection , 2007, IEEE Transactions on Automation Science and Engineering.

[46]  John Kenneth Salisbury,et al.  Haptic Rendering - Beyond Visual Computing , 2004, IEEE Computer Graphics and Applications.

[47]  Didier Y. R. Stainier,et al.  Zebrafish genetics and vertebrate heart formation , 2001, Nature Reviews Genetics.

[48]  K. C. Hui,et al.  Comparison of FEM and BEM for interactive object simulation , 2006, Comput. Aided Des..