Many aspects of defect theorems

We give a survey and a unified presentation of the defect theorem, its generalizations and recent aspects of interest. In its basic form, the defect theorem states that if a set of n words satisfies a nontrivial relation, then these words can be expressed simultaneously as products of at most n - 1 words. In other words, dependency of words causes a defect effect. There does not exist just one defect theorem, but several ones depending on the restrictions that are put to the n - 1 words. The defect theorem is closely related to equations of words, and in this way to the compactness theorem for systems of word equations.

[1]  Jean Berstel,et al.  Transductions and context-free languages , 1979, Teubner Studienbücher : Informatik.

[2]  Juhani Karhumäki,et al.  On Three-Element Codes , 1984, Theor. Comput. Sci..

[3]  M. Lothaire Makanin's Algorithm , 2002 .

[4]  Tero Harju,et al.  On the defect theorem and simplifiability , 1986 .

[5]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[6]  J. Allouche Algebraic Combinatorics on Words , 2005 .

[7]  Ján Manuch,et al.  Multiple factorizations of words and defect effect , 2002, Theor. Comput. Sci..

[8]  Umberto Eco,et al.  Theory of Codes , 1976 .

[9]  Tero Harju,et al.  Combinatorics on Words , 2004 .

[10]  J. Berstel,et al.  Sur le théorème du défaut , 1979 .

[11]  V. S. Guba,et al.  Equivalence of infinite systems of equations in free groups and semigroups to finite subsystems , 1986 .

[12]  Jean Néraud Elementariness of a finite set of words is co-NP-complete , 1990, RAIRO Theor. Informatics Appl..

[13]  Juhani Karhumäki,et al.  A Property of Three-Element Codes , 1984, Theor. Comput. Sci..

[14]  Wojciech Plandowski,et al.  On the Size of Independent Systems of Equations in Semigroups , 1994, MFCS.

[15]  Christian Choffrut,et al.  Combinatorics of Words , 1997, Handbook of Formal Languages.

[16]  M. W. Shields An Introduction to Automata Theory , 1988 .

[17]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[18]  Sabrina Mantaci,et al.  Defect Theorems for Trees , 1999, Fundam. Informaticae.

[19]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[20]  Wojciech Plandowski,et al.  On Defect Effect of Bi-Infinite Words , 1998, MFCS.

[21]  Tero Harju,et al.  The Equivalence Problem of Multitape Finite Automata , 1991, Theor. Comput. Sci..

[22]  Michael H. Albert,et al.  A Proof of Ehrenfeucht's Conjecture , 1985, Theor. Comput. Sci..

[23]  Wojciech Plandowski,et al.  A defect theorem for bi-infinite words , 2003, Theor. Comput. Sci..

[24]  Juha Honkala,et al.  A defect property of codes with unbounded delays , 1988, Discret. Appl. Math..