Interval observer design and control of uncertain non-homogeneous heat equations

The problems of state estimation and observer-based control for heat non-homogeneous equations under distributed in space point measurements are considered. First, an interval observer is designed in the form of Partial Differential Equations (PDEs), without Galerkin projection. Second, conditions of boundedness of the interval observer solutions with non-zero boundary conditions and measurement noise are proposed. Third, the obtained interval estimates are used to design a dynamic output-feedback stabilizing controller. The advantages of the PDE-based interval observer over the approximation-based one are clearly shown in the numerical example.

[1]  C. SIAMJ.,et al.  SAMPLED-DATA DISTRIBUTED H∞ CONTROL OF TRANSPORT REACTION SYSTEMS∗ , 2013 .

[2]  Andrey Polyakov,et al.  Design of interval observers and controls for PDEs using finite-element approximations , 2018, Autom..

[3]  Vande Wouwer State Estimation In Distributed Parameter Systems , 2011 .

[4]  Eric Walter,et al.  Guaranteed Nonlinear State Estimator for Cooperative Systems , 2004, Numerical Algorithms.

[5]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[6]  George Stephanopoulos,et al.  An estimator for a class of non-linear distributed systems , 1982 .

[7]  Sergey Dashkovskiy,et al.  Input-to-state stability of infinite-dimensional control systems , 2012, Mathematics of Control, Signals, and Systems.

[8]  Bart De Schutter,et al.  Observers for linear distributed-parameter systems: A survey , 2011, 2011 IEEE International Symposium on Robotic and Sensors Environments (ROSE).

[9]  Denis V. Efimov,et al.  Interval State Estimation for a Class of Nonlinear Systems , 2012, IEEE Transactions on Automatic Control.

[10]  Emilia Fridman,et al.  Matrix inequality‐based observer design for a class of distributed transport‐reaction systems , 2014 .

[11]  Yury Orlov,et al.  On the ISS properties of a class of parabolic DPS' with discontinuous control using sampled-in-space sensing and actuation , 2017, Autom..

[12]  Jean-Luc Gouzé,et al.  Near optimal interval observers bundle for uncertain bioreactors , 2007 .

[13]  Emilia Fridman,et al.  Network-based H∞ filtering of parabolic systems , 2014, Autom..

[14]  Hans Zwart,et al.  An Introduction to Infinite-Dimensional Linear Systems Theory , 1995, Texts in Applied Mathematics.

[15]  Andreas Rauh,et al.  An Interval Approach for Parameter Identification and Observer Design of Spatially Distributed Heating Systems , 2018 .

[16]  Emilia Fridman,et al.  Delayed point control of a reaction-diffusion PDE under discrete-time point measurements , 2018, Autom..

[17]  Leonid M. Fridman,et al.  Interval estimation for LPV systems applying high order sliding mode techniques , 2012, Autom..

[18]  Karl Kunisch,et al.  Control and Optimization with PDE Constraints , 2013, International Series of Numerical Mathematics.

[19]  Miroslav Krstic,et al.  Observer design for a class of nonlinear ODE-PDE cascade systems , 2015, Syst. Control. Lett..

[20]  Jean-Luc Gouzé,et al.  Closed loop observers bundle for uncertain biotechnological models , 2004 .

[21]  Jun-Wei Wang,et al.  Pointwise exponential stabilization of a linear parabolic PDE system using non-collocated pointwise observation , 2018, Autom..

[22]  J. Aplevich,et al.  Lecture Notes in Control and Information Sciences , 1979 .

[23]  Emilia Fridman,et al.  Robust sampled-data control of a class of semilinear parabolic systems , 2012, Autom..

[24]  Emilia Fridman,et al.  Sampled-Data Distributed HINFINITY Control of Transport Reaction Systems , 2013, SIAM J. Control. Optim..

[25]  Denis V. Efimov,et al.  Control of Nonlinear and LPV Systems: Interval Observer-Based Framework , 2013, IEEE Transactions on Automatic Control.

[26]  J. Gouzé,et al.  Interval observers for uncertain biological systems , 2000 .

[27]  Mary F. Wheeler,et al.  $L_\infty $ Estimates of Optimal Orders for Galerkin Methods for One-Dimensional Second Order Parabolic and Hyperbolic Equations , 1973 .

[28]  H. Nijmeijer,et al.  New directions in nonlinear observer design , 1999 .

[29]  Scott J. Moura,et al.  Sensitivity-based interval PDE observer for battery SOC estimation , 2015, 2015 American Control Conference (ACC).

[30]  Luc Jaulin,et al.  Nonlinear bounded-error state estimation of continuous-time systems , 2002, Autom..

[31]  Eduardo D. Sontag,et al.  Input to state stability and allied system properties , 2011 .

[32]  Emilia Fridman Observers and initial state recovering for a class of hyperbolic systems via Lyapunov method , 2013, Autom..

[33]  Ali Zolghadri,et al.  Interval observer design for consistency checks of nonlinear continuous-time systems , 2010, Autom..

[34]  Thorsten Gerber,et al.  Semigroups Of Linear Operators And Applications To Partial Differential Equations , 2016 .

[35]  Denis Dochain State observers for tubular reactors with unknown kinetics , 2000 .

[36]  Jean-Michel Coron,et al.  Null Controllability and Finite Time Stabilization for the Heat Equations with Variable Coefficients in Space in One Dimension via Backstepping Approach , 2017 .

[37]  Emilia Fridman,et al.  On design of interval observers for parabolic PDEs , 2017 .

[38]  Andrey Polyakov,et al.  Interval observers for PDEs: approximation approach , 2016 .

[39]  Gregory Hagen,et al.  Spillover Stabilization in Finite-Dimensional Control and Observer Design for Dissipative Evolution Equations , 2003, SIAM J. Control. Optim..

[40]  Andrey Smyshlyaev,et al.  Adaptive Control of Parabolic PDEs , 2010 .

[41]  乔花玲,et al.  关于Semigroups of Linear Operators and Applications to Partial Differential Equations的两个注解 , 2003 .