Optical THz‐wave generation with periodically‐inverted GaAs

We overview methods of THz-wave generation using frequency down-conversion in GaAs with periodically-inverted crystalline orientation. First, we compare different nonlinear-optical materials suitable for THz generation, analyze THz generation process in quasi-phase-matched crystals and consider theoretical limits of optical-to-THz conversion. Then, we review single-pass optical rectification experiments with femtosecond pump pulses, performed in periodically-inverted GaAs, where monochromatic THz output tunable in the range 0.9–3 THz was produced. Finally, we describe a novel approach to create a compact highly efficient tunable (0.5–3.5 THz) room temperature monochromatic THz source, based on the concept of intracavity THz generation via resonantly-enhanced difference frequency mixing. This approach allowed generating of 1 mW of average THz power, potentially scalable to 10–100 mW.

[1]  R. Hochstrasser,et al.  Intense terahertz pulses by four-wave rectification in air. , 2000, Optics letters.

[2]  Jun-ichi Nishizawa,et al.  Tunable terahertz wave generation in the 3- to 7-THz region from GaP , 2003 .

[3]  F. Keilmann,et al.  Far-infrared nonlinear optics. I. χ (2) near ionic resonance , 1986 .

[4]  Koichiro Tanaka,et al.  Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56μm fiber laser pulses , 2004 .

[5]  K. Nelson,et al.  Generation of 10 μJ ultrashort terahertz pulses by optical rectification , 2007 .

[6]  Microwave Nonlinear Susceptibilities Due to Electronic and Ionic Anharmonicities in Acentric Crystals , 1971 .

[7]  Roshan L. Aggarwal,et al.  Far‐infrared step‐tunable coherent radiation source: 70 μm to 2 mm , 2003 .

[8]  Wei Shi,et al.  Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal. , 2002, Optics letters.

[9]  D. Nikogosyan,et al.  Properties of Optical and Laser-Related Materials: A Handbook , 1997 .

[10]  Martin M. Fejer,et al.  Multiphoton absorption and nonlinear refraction of GaAs in the mid-infrared , 2007 .

[11]  M M Fejer,et al.  High-power source of THz radiation based on orientation-patterned GaAs pumped by a fiber laser. , 2006, Optics express.

[12]  Mansoor Sheik-Bahae,et al.  Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe , 1992 .

[13]  T Edwards,et al.  Compact source of continuously and widely-tunable terahertz radiation. , 2006, Optics express.

[14]  P. Coleman,et al.  Step-Tunable Far Infrared Radiation by Phase Matched Mixing in Planar-Dielectric Waveguides , 1974 .

[15]  Peter G. Schunemann,et al.  Coherent terahertz waves based on difference-frequency generation in an annealed zinc–germanium phosphide crystal: improvements on tuning ranges and peak powers , 2004 .

[16]  Martin M. Fejer,et al.  Terahertz-wave generation in quasi-phase-matched GaAs , 2006 .

[17]  Almantas Galvanauskas,et al.  Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate , 2000 .

[18]  Paul R. Berman,et al.  Generation of Far Infrared as a Difference Frequency , 1965 .

[19]  J. Kuhl,et al.  Scaling up the energy of THz pulses created by optical rectification. , 2005, Optics express.

[20]  Hiroyuki Yokoyama,et al.  Surface-emitted terahertz-wave difference-frequency generation in two-dimensional periodically poled lithium niobate. , 2005, Optics letters.

[21]  Robert L. Byer,et al.  Diffusion-bonded stacked GaAs for quasiphase-matched second-harmonic generation of a carbon dioxide laser , 1993 .

[22]  Kei-Hsiung Yang,et al.  Phase‐matched far‐infrared generation by optical mixing of dye laser beams , 1973 .

[23]  R. Beigang,et al.  Generation of tunable narrow-band surface-emitted terahertz radiation in periodically poled lithium niobate. , 2001, Optics letters.

[24]  C. Joshi,et al.  Generation of megawatt-power terahertz pulses by noncollinear difference-frequency mixing in GaAs , 2005 .

[25]  Hachiro Nakanishi,et al.  Continuously tunable terahertz-wave generation in GaP crystal by collinear difference frequency mixing , 2004 .

[26]  Richard H. Pantell,et al.  Continuously tunable submillimeter wave source , 1975 .

[27]  K. Kawase,et al.  Enhancement of terahertz-wave output from LiNbO(3) optical parametric oscillators by cryogenic cooling. , 1999, Optics letters.

[28]  C. Joshi,et al.  High-power tunable, 0.5-3 THz radiation source based on nonlinear difference frequency mixing of CO 2 laser lines , 2007 .

[29]  M M Fejer,et al.  Intracavity terahertz-wave generation in a synchronously pumped optical parametric oscillator using quasi-phase-matched GaAs. , 2007, Optics letters.

[30]  Alexander P. Yelisseyev,et al.  Stability and frequency tuning of thermally loaded continuous-wave AgGaS 2 optical parametric oscillators , 1999 .

[31]  K. Vodopyanov,et al.  Optical generation of narrow-band terahertz packets in periodically inverted electro-optic crystals: conversion efficiency and optimal laser pulse format. , 2006, Optics express.

[32]  Xiang Zhang,et al.  Terahertz beam generation by femtosecond optical pulses in electro‐optic materials , 1992 .

[33]  Xicheng Zhang,et al.  Materials for terahertz science and technology , 2002, Nature materials.

[34]  Hirokazu Takenouchi,et al.  Terahertz-wave generation from quasi-phase-matched GaP for 1.55μm pumping , 2006 .

[35]  Xiang Zhang,et al.  Terahertz optical rectification from 〈110〉 zinc‐blende crystals , 1994 .

[36]  M. Fejer,et al.  Generation of multicycle terahertz pulses via optical rectification in periodically inverted GaAs structures , 2006 .

[37]  Martin M. Fejer,et al.  All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion , 2001 .

[38]  T. Elsaesser,et al.  Generation of single-cycle THz transients with high electric-field amplitudes. , 2005, Optics letters.

[39]  Mark Cronin-Golomb,et al.  Cascaded nonlinear difference-frequency generation of enhanced terahertz wave production. , 2004, Optics letters.

[40]  M. Fejer,et al.  Quasi-phase-matched second harmonic generation: tuning and tolerances , 1992 .

[41]  Jones,et al.  Ionization of Rydberg atoms by subpicosecond half-cycle electromagnetic pulses. , 1993, Physical review letters.

[42]  C. Liu,et al.  Power scalable compact THz system based on an ultrafast Yb-doped fiber amplifier. , 2006, Optics express.

[43]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[44]  Kei-Hsiung Yang,et al.  Generation of Far‐Infrared Radiation by Picosecond Light Pulses in LiNbO3 , 1971 .

[45]  Mansoor Sheik-Bahae,et al.  Infrared to ultraviolet measurements of two-photon absorption and n/sub 2/ in wide bandgap solids , 1996 .

[46]  W. Shen,et al.  Direct evidence of Kerr-like nonlinearity by femtosecond Z-scan technique. , 2006, Optics express.

[47]  S. Chekalin,et al.  Spectral modification of femtosecond laser pulses in the process of highly efficient generation of terahertz radiation via optical rectification , 2007 .

[48]  Nobuo Takeuchi,et al.  Far-Infrared Difference-Frequency Generation by Picosecond Laser Pulses , 1970 .

[49]  T. Elsaesser,et al.  Nonlinear terahertz response of n-type GaAs , 2006 .

[50]  Kodo Kawase,et al.  COHERENT TUNABLE THZ-WAVE GENERATION FROM LINBO3 WITH MONOLITHIC GRATING COUPLER , 1996 .

[51]  D. Grischkowsky,et al.  MEASUREMENTS OF THE THZ ABSORPTION AND DISPERSION OF ZNTE AND THEIR RELEVANCE TO THE ELECTRO-OPTIC DETECTION OF THZ RADIATION , 1999 .

[52]  G. D. Boyd,et al.  Phase‐matched submillimeter wave generation by difference‐frequency mixing in ZnGeP2 , 1972 .