Thermal uncertainty quantification in frequency responses of laminated composite plates

Abstract The propagation of thermal uncertainty in composite structures has significant computational challenges. This paper presents the thermal, ply-level and material uncertainty propagation in frequency responses of laminated composite plates by employing surrogate model which is capable of dealing with both correlated and uncorrelated input parameters. The present approach introduces the generalized high dimensional model representation (GHDMR) wherein diffeomorphic modulation under observable response preserving homotopy (D-MORPH) regression is utilized to ensure the hierarchical orthogonality of high dimensional model representation component functions. The stochastic range of thermal field includes elevated temperatures up to 375 K and sub-zero temperatures up to cryogenic range of 125 K. Statistical analysis of the first three natural frequencies is presented to illustrate the results and its performance.

[1]  M. Shariyat,et al.  Thermal buckling analysis of rectangular composite plates with temperature-dependent properties based on a layerwise theory , 2007 .

[2]  H. Rabitz,et al.  Random sampling-high dimensional model representation (RS-HDMR) and orthogonality of its different order component functions. , 2006, The journal of physical chemistry. A.

[3]  S. W. Wang,et al.  Fully equivalent operational models for atmospheric chemical kinetics within global chemistry-transport models , 1999 .

[4]  Karin Schwab,et al.  Best Approximation In Inner Product Spaces , 2016 .

[5]  M. Singh,et al.  Random response of antisymmetric angle-ply composite plates with levy boundary conditions , 1993 .

[6]  P. K. Sinha,et al.  Hygrothermal effects on the free vibration of laminated composite plates , 1992 .

[7]  S. K. Sahu,et al.  Vibration of woven fiber composite doubly curved panels with strip delamination in thermal field , 2015 .

[8]  K. Prewo,et al.  The Thermal Expansion Behavior of Unidirectional and Bidirectional Kevlar/Epoxy Composites , 1979 .

[9]  Sondipon Adhikari,et al.  Stochastic free vibration analysis of angle-ply composite plates – A RS-HDMR approach , 2015 .

[10]  R. Cook,et al.  Concepts and Applications of Finite Element Analysis , 1974 .

[11]  H. Rabitz,et al.  High Dimensional Model Representations Generated from Low Dimensional Data Samples. I. mp-Cut-HDMR , 2001 .

[12]  Andrew Shaw,et al.  A critical reliability evaluation of fibre reinforced composite materials based on probabilistic micro and macro-mechanical analysis , 2010 .

[13]  R. Penmetsa,et al.  Stochastic modeling of delamination growth in unidirectional composite DCB specimens using cohesive zone models , 2013 .

[14]  Herschel Rabitz,et al.  General formulation of HDMR component functions with independent and correlated variables , 2011, Journal of Mathematical Chemistry.

[15]  Sudip Dey,et al.  Natural frequencies of delaminated composite rotating conical shells-A finite element approach , 2012 .

[16]  E. Carrera,et al.  Free vibration analysis of sandwich plates with anisotropic face sheets in thermal environment by using the hierarchical trigonometric Ritz formulation , 2013 .

[17]  V. Shim,et al.  Hygrothermal analysis of woven-fabric composite plates , 1997 .

[18]  James M. Whitney,et al.  Effect of Environment on the Elastic Response of Layered Composite Plates , 1971 .

[19]  David E. Bowles,et al.  Prediction of Coefficients of Thermal Expansion for Unidirectional Composites , 1989 .

[20]  H. Rabitz,et al.  High Dimensional Model Representations , 2001 .

[21]  Y. Stavsky,et al.  Elastic wave propagation in heterogeneous plates , 1966 .

[22]  Mohamad S. Qatu,et al.  Vibration studies for laminated composite twisted cantilever plates , 1991 .

[23]  L. Kollár,et al.  Mechanics of Composite Structures , 2003 .

[24]  Hui-Shen Shen,et al.  Thermal postbuckling behavior of imperfect shear deformable laminated plates with temperature-dependent properties , 2001 .

[25]  H. Rabitz,et al.  Efficient input-output model representations , 1999 .

[26]  S. Adhikari,et al.  Stochastic free vibration analyses of composite shallow doubly curved shells – A Kriging model approach , 2015 .

[27]  P. K. Sinha,et al.  Hygrothermal effects on the buckling of laminated composite plates , 1992 .

[28]  George Z. Voyiadjis,et al.  Mechanics of Composite Materials with MATLAB , 2005 .

[29]  Abdul Hamid Sheikh,et al.  A new element for the analysis of composite plates , 2014 .

[30]  Leonard Meirovitch,et al.  Dynamics And Control Of Structures , 1990 .

[31]  H. Saunders,et al.  Finite element procedures in engineering analysis , 1982 .

[32]  Anuj Jain,et al.  Thermoelastic stability analysis of laminated composite plates: An analytical approach , 2009 .

[33]  Haoran Chen,et al.  Random vibration of composite structures with an attached frequency-dependent damping layer , 2008 .

[34]  Herschel Rabitz,et al.  Multicut‐HDMR with an application to an ionospheric model , 2004, J. Comput. Chem..

[35]  D. Hui,et al.  Hygrothermal effects on the dynamic compressive properties of graphite/epoxy composite material , 2012 .

[36]  Jae-Sang Park,et al.  Thermal post-buckling and flutter characteristics of composite plates embedded with shape memory alloy fibers , 2005 .

[37]  N. Boyard,et al.  Study of variation of thermal expansion coefficients in carbon/epoxy laminated composite plates , 2013 .

[38]  Herschel Rabitz,et al.  Global uncertainty assessments by high dimensional model representations (HDMR) , 2002 .

[39]  S. Tsai,et al.  Introduction to composite materials , 1980 .

[40]  Herschel Rabitz,et al.  Observable-preserving control of quantum dynamics over a family of related systems , 2005 .

[41]  F. Deutsch Best approximation in inner product spaces , 2001 .