Application of homotopy analysis method and inverse solution of a rectangular wet fin

Abstract This paper presents the analytical solution of a rectangular fin under the simultaneous heat and mass transfer across the fin surface and the fin tip, and estimates the unknown thermal and geometrical configurations of the fin using inverse heat transfer analysis. The local temperature field is obtained by using homotopy analysis method for insulated and convective fin tip boundary conditions. Using genetic algorithm, the thermal and geometrical parameters, viz., thermal conductivity of the material, surface heat transfer coefficient and dimensions of the fin have been simultaneously estimated for the prescribed temperature field. Earlier inverse studies on wet fin have been restricted to the analysis of nonlinear governing equation with either insulated tip condition or finite tip temperature only. The present study developed a closed-form solution with the consideration of nonlinearity effects in both governing equation and boundary condition. The study on inverse optimization leads to many feasible combination of fin materials, thermal conditions and fin dimensions. Thus allows the flexibility for designing a fin under wet conditions, based on multiple combinations of fin materials, fin dimensions and thermal configurations to achieve the required heat transfer duty. It is further determined that the allowable measurement error should be limited to ±10–12% in order to achieve satisfactory reconstruction.

[1]  Chi-Chuan Wang,et al.  Airside performance of herringbone fin‐and‐tube heat exchangers in wet conditions , 1999 .

[2]  Min Zhao,et al.  An effective layer pattern optimization model for multi-stream plate-fin heat exchanger using genetic algorithm , 2013 .

[3]  Cheng-Hung Huang,et al.  A transient 3-D inverse problem in imaging the time-dependent local heat transfer coefficients for plate fin , 2005 .

[4]  Win-Jin Chang,et al.  Inverse heat transfer analysis of a functionally graded fin to estimate time-dependent base heat flux and temperature distributions , 2012 .

[5]  Ranjan Das,et al.  Application of genetic algorithm for unknown parameter estimations in cylindrical fin , 2012, Appl. Soft Comput..

[6]  Balaram Kundu,et al.  Approximate analytic solution for performances of wet fins with a polynomial relationship between humidity ratio and temperature , 2009 .

[7]  B. Hardy,et al.  Optimization of internal heat exchangers for hydrogen storage tanks utilizing metal hydrides , 2012 .

[8]  Ranjan Das,et al.  Predicting geometry of rectangular and hyperbolic fin profiles with temperature-dependent thermal properties using decomposition and evolutionary methods , 2013 .

[9]  D. P. Sekulic,et al.  Extended surface heat transfer , 1972 .

[10]  Subhash C. Mishra,et al.  An Inverse Analysis for Parameter Estimation Applied to a Non-Fourier Conduction–Radiation Problem , 2011 .

[11]  Mostafa H. Sharqawy,et al.  Efficiency and optimization of straight fins with combined heat and mass transfer – An analytical solution , 2008 .

[12]  Khosrow Jafarpur,et al.  Heat transfer analysis of lateral perforated fin heat sinks , 2009 .

[13]  Pooya Hoseinpoori,et al.  Energy and cost optimization of a plate and fin heat exchanger using genetic algorithm , 2011 .

[14]  S. Liao,et al.  Beyond Perturbation: Introduction to the Homotopy Analysis Method , 2003 .

[15]  Balaram Kundu,et al.  Analytic solution for heat transfer of wet fins on account of all nonlinearity effects , 2012 .

[16]  M. Shur,et al.  Properties of advanced semiconductor materials : GaN, AlN, InN, BN, SiC, SiGe , 2001 .

[17]  Kim Tiow Ooi,et al.  Predicting multiple combination of parameters for designing a porous fin subjected to a given temperature requirement , 2013 .

[18]  Hassan Hajabdollahi,et al.  Thermal-economic multi-objective optimization of plate fin heat exchanger using genetic algorithm , 2010 .

[19]  Ranjan Das Estimation of Radius Ratio in a Fin Using Inverse CFD Model , 2011 .

[20]  Amin Behzadmehr,et al.  Optimum design of a longitudinal fin array with convection and radiation heat transfer using a genetic algorithm , 2010 .

[21]  R. Das,et al.  A combined cycle plant with air and fuel recuperator for captive power application. Part 2: Inverse analysis and parameter estimation , 2014 .

[22]  G. Domairry,et al.  Homotopy analysis method to determine the fin efficiency of convective straight fins with temperature-dependent thermal conductivity , 2009 .

[23]  Abdul Aziz,et al.  Convective-radiative fins with simultaneous variation of thermal conductivity, heat transfer coefficient, and surface emissivity with temperature , 2012 .

[24]  S. C. Martha,et al.  Inverse analysis of conductive-convective wet triangular fin for predicting thermal properties and fin dimensions , 2014 .

[25]  M. M. Salah El-Din Performance analysis of partially-wet fin assembly , 1998 .

[26]  J. Armstrong,et al.  A Review of Staggered Array Pin Fin Heat Transfer for Turbine Cooling Applications , 1987 .

[27]  Suresh V. Garimella,et al.  Optimization Under Uncertainty Applied to Heat Sink Design , 2013 .

[28]  Haw Long Lee,et al.  Inverse problem in determining convection heat transfer coefficient of an annular fin , 2007 .

[29]  W. Khan,et al.  Optimization of Cylindrical Pin-Fin Heat Sinks Using Genetic Algorithms , 2009, IEEE Transactions on Components and Packaging Technologies.

[30]  David T.W. Lin,et al.  Inverse estimation of the unknown heat flux boundary with irregular shape fins , 2011 .

[31]  F. Khani,et al.  A series solution of the fin problem with a temperature-dependent thermal conductivity , 2009 .

[32]  Zahra Hajabdollahi,et al.  Multi-objective optimization of pin fin to determine the optimal fin geometry using genetic algorithm , 2012 .

[33]  G. I. Garas’ko,et al.  Analysis of the 1-D heat conduction problem for a single fin with temperature dependent heat transfer coefficient: Part I – Extended inverse and direct solutions , 2008 .

[34]  A. Aziz,et al.  Convective–radiative radial fins with convective base heating and convective–radiative tip cooling: Homogeneous and functionally graded materials , 2013 .

[35]  Jonathan Rose,et al.  Effect of Fin Spacing on the Performance of Horizontal Integral-Fin Condenser Tubes , 1985 .

[36]  Ranjan Das,et al.  Application of simulated annealing in a rectangular fin with variable heat transfer coefficient , 2013 .

[37]  J. W. Ramsey,et al.  Thermal Environmental Engineering , 1970 .

[38]  R. Das,et al.  Application of Simulated Annealing for Simultaneous Estimation of Parameters in a Cylindrical Fin , 2012 .

[39]  Chii-Dong Ho,et al.  Performance improvement of a double-pass solar air heater with fins and baffles under recycling operation , 2012 .

[40]  Jiin-Yuh Jang,et al.  A two-dimensional fin efficiency analysis of combined heat and mass transfer in elliptic fins , 2002 .

[41]  Syed M. Zubair,et al.  Performance and optimum geometry of spines with simultaneous heat and mass transfer , 2009 .

[42]  S. Y. Liang,et al.  Analytical study of evaporator coil in humid environment , 1999 .

[43]  Brant C. White,et al.  United States patent , 1985 .

[44]  Davood Domiri Ganji,et al.  Thermal performance of circular convective–radiative porous fins with different section shapes and materials , 2013 .

[45]  Efficiency and Optimization of a Straight Rectangular Fin with Combined Heat and Mass Transfer , 2008 .

[46]  R. B. Montgomery VISCOSITY AND THERMAL CONDUCTIVITY OF AIR AND DIFFUSIVITY OF WATER VAPOR IN AIR , 1947 .

[47]  N. Herisanu,et al.  Application of Optimal Homotopy Asymptotic Method for solving nonlinear equations arising in heat transfer , 2008 .

[48]  R. Das,et al.  Retrieval of thermal properties in a transient conduction–radiation problem with variable thermal conductivity , 2009 .

[49]  Ranjan Das,et al.  Application of Adomian decomposition method and inverse solution for a fin with variable thermal conductivity and heat generation , 2013 .

[50]  A. Colburn,et al.  Mass Transfer (Absorption) Coefficients Prediction from Data on Heat Transfer and Fluid Friction , 1934 .

[51]  G. Domairry,et al.  Assessment of homotopy analysis method and homotopy perturbation method in non-linear heat transfer equation , 2008 .

[52]  David E. Goldberg,et al.  Control system optimization using genetic algorithms , 1992 .