SRV2, a gene required for RAS activation of adenylate cyclase in yeast

We have identified a gene, SRV2, mutations of which alleviate stress sensitivity in strains carrying an activated RAS gene. Epistasis analysis suggests that the gene affects accumulation of cAMP in the cell. Direct assays of cAMP accumulation indicate that mutations of the gene diminish the rate of in vivo production of cAMP following stimulation by an activated RAS allele. Null mutations of srv2 result in lethality, which cannot be suppressed by mutational activation of the cAMP-dependent protein kinase. The sequence of the gene indicates that it encodes an adenylate cyclase-associated protein. These results demonstrate that SRV2 protein is required for RAS-activated adenylate cyclase activity, but that it participates in other essential cellular functions as well.

[1]  G. Fink,et al.  KAR1, a gene required for function of both intranuclear and extranuclear microtubules in yeast , 1987, Cell.

[2]  M. Wigler,et al.  Purification of a RAS-responsive adenylyl cyclase complex from Saccharomyces cerevisiae by use of an epitope addition method , 1988, Molecular and cellular biology.

[3]  K. Murata,et al.  Transformation of intact yeast cells treated with alkali cations , 1983 .

[4]  Michael Wigler,et al.  Three different genes in S. cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase , 1987, Cell.

[5]  M. Wigler,et al.  Genetic analysis of mammalian GAP expressed in yeast , 1989, Cell.

[6]  E. Scolnick,et al.  Expression and characterization of ras mRNAs from Saccharomyces cerevisiae , 1984, Molecular and cellular biology.

[7]  M. Wigler,et al.  A product of yeast RAS2 gene is a guanine nucleotide binding protein. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[8]  M. Wigler,et al.  Cloning and characterization of the high-affinity cAMP phosphodiesterase of Saccharomyces cerevisiae. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[9]  M. Wigler,et al.  Genetic analysis of yeast RAS1 and RAS2 genes , 1984, Cell.

[10]  L. Hartwell Saccharomyces cerevisiae cell cycle. , 1974, Bacteriological reviews.

[11]  E. Scolnick,et al.  An adenylate cyclase from Saccharomyces cerevisiae that is stimulated by RAS proteins with effector mutations , 1988, Molecular and cellular biology.

[12]  K. Matsumoto,et al.  IRA1, an inhibitory regulator of the RAS-cyclic AMP pathway in Saccharomyces cerevisiae , 1989, Molecular and cellular biology.

[13]  D. Botstein,et al.  A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. , 1987, Gene.

[14]  Kunihiro Matsumoto,et al.  Genetic analysis of the role of cAMP in yeast , 1985, Yeast.

[15]  M. Wigler,et al.  RAS proteins can induce meiosis in xenopus oocytes , 1985, Cell.

[16]  J. Gibbs,et al.  Suppressors of the ras2 mutation of Saccharomyces cerevisiae. , 1986, Genetics.

[17]  E. De Vendittis,et al.  Suppression of defective RAS1 and RAS2 functions in yeast by an adenylate cyclase activated by a single amino acid change. , 1986, The EMBO journal.

[18]  J. Broach [21] Construction of high copy yeast vectors using 2-μm circle sequences , 1983 .

[19]  L. C. Robinson,et al.  Mammalian and yeast ras gene products: biological function in their heterologous systems. , 1985, Science.

[20]  M. Wigler,et al.  DNA sequence and characterization of the S. cerevisiae gene encoding adenylate cyclase , 1985, Cell.

[21]  M. Wigler,et al.  The S. cerevisiae CDC25 gene product regulates the RAS/adenylate cyclase pathway , 1987, Cell.

[22]  G. Natsoulis,et al.  5-Fluoroorotic acid as a selective agent in yeast molecular genetics. , 1987, Methods in enzymology.

[23]  M. Wigler,et al.  Functional homology of mammalian and yeast RAS genes , 1985, Cell.

[24]  Kunihiro Matsumoto,et al.  Initiation of meiosis in yeast mutants defective in adenylate cyclase and cyclic AMP-dependent protein kinase , 1983, Cell.

[25]  G. Church,et al.  Genomic sequencing. , 1993, Methods in molecular biology.

[26]  M. Wigler,et al.  Cloning and characterization of BCY1, a locus encoding a regulatory subunit of the cyclic AMP-dependent protein kinase in Saccharomyces cerevisiae , 1987, Molecular and cellular biology.

[27]  M. Wigler,et al.  Cloning and characterization of CAP, the S. cerevisiae gene encoding the 70 kd adenylyl cyclase-associated protein , 1990, Cell.

[28]  E. Scolnick,et al.  Nucleotide sequence of two rasH related-genes isolated from the yeast Saccharomyces cerevisiae. , 1984, Nucleic acids research.

[29]  K. Matsumoto,et al.  Isolation and characterization of yeast mutants deficient in adenylate cyclase and cAMP-dependent protein kinase. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[30]  J. Broach,et al.  The function of ras genes in Saccharomyces cerevisiae. , 1990, Advances in cancer research.

[31]  H. Bourne Transducing proteins: Yeast RAS and Tweedledee's logic , 1985, Nature.

[32]  M. Wigler,et al.  In yeast, RAS proteins are controlling elements of adenylate cyclase , 1985, Cell.

[33]  K. Tatchell,et al.  Characterization of Saccharomyces cerevisiae genes encoding subunits of cyclic AMP-dependent protein kinase , 1987, Molecular and cellular biology.

[34]  E. Scolnick,et al.  Yeast and mammalian ras proteins have conserved biochemical properties , 1985, Nature.

[35]  E. Scolnick,et al.  ras-Related gene sequences identified and isolated from Saccharomyces cerevisiae , 1983, Nature.

[36]  L. C. Robinson,et al.  CDC25: a component of the RAS-adenylate cyclase pathway in Saccharomyces cerevisiae. , 1987, Science.

[37]  M. Wigler,et al.  Genes in S. cerevisiae encoding proteins with domains homologous to the mammalian ras proteins , 1984, Cell.

[38]  F. Winston,et al.  A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. , 1987, Gene.

[39]  F. Sanger,et al.  DNA sequencing with chain-terminating inhibitors. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[40]  K. Matsumoto,et al.  Reconstitution of the GTP-dependent adenylate cyclase from products of the yeast CYR1 and RAS2 genes in Escherichia coli. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[41]  E. Scolnick,et al.  Saccharomyces cerevisiae synthesizes proteins related to the p21 gene product of ras genes found in mammals , 1984, Molecular and cellular biology.

[42]  K. C. Reed,et al.  Rapid transfer of DNA from agarose gels to nylon membranes. , 1985, Nucleic acids research.

[43]  G. Fink,et al.  Methods in yeast genetics , 1979 .

[44]  E. Scolnick,et al.  Regulatory function of the Saccharomyces cerevisiae RAS C-terminus , 1987, Molecular and cellular biology.

[45]  K. Matsumoto,et al.  Identification of the structural gene and nonsense alleles for adenylate cyclase in Saccharomyces cerevisiae , 1984, Journal of bacteriology.

[46]  B. Cox,et al.  Effect of cell cycle position on thermotolerance in Saccharomyces cerevisiae , 1987, Journal of bacteriology.

[47]  M. Wigler,et al.  Cloning and characterization of the low-affinity cyclic AMP phosphodiesterase gene of Saccharomyces cerevisiae , 1987, Molecular and cellular biology.

[48]  K. Tatchell RAS genes and growth control in Saccharomyces cerevisiae , 1986, Journal of bacteriology.

[49]  M. Jacquet,et al.  Characterization, cloning and sequence analysis of the CDC25 gene which controls the cyclic AMP level of Saccharomyces cerevisiae. , 1986, The EMBO journal.

[50]  J. Broach,et al.  Loss of Ras activity in Saccharomyces cerevisiae is suppressed by disruptions of a new kinase gene, YAKI, whose product may act downstream of the cAMP-dependent protein kinase. , 1989, Genes & development.

[51]  S. Hattori,et al.  The ras oncogene product p21 is not a regulatory component of adenylate cyclase , 1985, Nature.

[52]  J. Broach,et al.  Fatty acylation is important but not essential for Saccharomyces cerevisiae RAS function , 1987, Molecular and cellular biology.

[53]  M. Marshall,et al.  The ras oncogene--an important regulatory element in lower eucaryotic organisms , 1989, Microbiological reviews.