QRB, QFS, and the Probabilistic Powerdomain

We show that the first author's QRB-domains coincide with Li and Xu's QFS-domains, and also with Lawson-compact quasi-continuous dcpos, with stably-compact locally finitary compact spaces, with sober QFS-spaces, and with sober QRB-spaces. The first three coincidences were discovered independently by Lawson and Xi. The equivalence with sober QFS-spaces is then applied to give a novel, direct proof that the probabilistic powerdomain of a QRB-domain is a QRB-domain. This improves upon a previous, similar result, which was limited to pointed, second-countable QRB-domains.

[1]  Samson Abramsky,et al.  Domain theory , 1995, LICS 1995.

[2]  Klaus Keimel,et al.  The probabilistic powerdomain for stably compact spaces , 2004, Theor. Comput. Sci..

[3]  Jimmie D. Lawson T0-spaces and pointwise convergence , 1985 .

[4]  Luoshan Xu,et al.  QFS-Domains and their Lawson Compactness , 2013, Order.

[5]  Jean Goubault-Larrecq,et al.  omega-QRB-Domains and the Probabilistic Powerdomain , 2010, 2010 25th Annual IEEE Symposium on Logic in Computer Science.

[6]  Klaus Keimel,et al.  Semantic Domains for Combining Probability and Non-Determinism , 2005, Electronic Notes in Theoretical Computer Science.

[7]  Achim Jung,et al.  The troublesome probabilistic powerdomain , 1997, COMPROX.

[8]  H. König Measure and Integration: An Advanced Course in Basic Procedures and Applications , 1996 .

[9]  Klaus Keimel,et al.  The way-below relation of function spaces over semantic domains , 1998 .

[10]  Jean Goubault-Larrecq omega-QRB-Domains and the Probabilistic Powerdomain , 2010, 2010 25th Annual IEEE Symposium on Logic in Computer Science.

[11]  K. Hofmann,et al.  Continuous Lattices and Domains , 2003 .

[12]  Klaus Keimel,et al.  Semantic Domains for Combining Probability and Non-Determinism , 2005, Electron. Notes Theor. Comput. Sci..

[13]  Abbas Edalat Domain Theory and Integration , 1995, Theor. Comput. Sci..

[14]  P. Venugopalan,et al.  Quasicontinuous posets , 1990 .

[15]  Xiaoyong Xi,et al.  The Equivalence of QRB, QFS, and Compactness for Quasicontinuous Domains , 2015, Order.

[16]  Klaus Keimel,et al.  Quasicontinuous Domains and the Smyth Powerdomain , 2013, MFPS.

[17]  Reinhold Heckmann,et al.  Spaces of Valuations , 1996 .

[18]  J E A N G O U B A U L T-L A De Groot Duality and Models of Choice : Angels , Demons , and Nature , 2009 .

[19]  Jean Goubault-Larrecq Non-Hausdorff Topology and Domain Theory - Selected Topics in Point-Set Topology , 2013, New Mathematical Monographs.

[20]  Andrea Schalk,et al.  Algebras for generalized power constructions , 1993 .

[21]  Claire Jones,et al.  Probabilistic non-determinism , 1990 .

[22]  Klaus Keimel Topological Cones: Foundations for a Domain Theoretical Semantics Combining Probability and Nondeterminism , 2005, MFPS.

[23]  Achim Jung,et al.  The classification of continuous domains , 1990, [1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science.

[24]  Gordon D. Plotkin,et al.  A Powerdomain Construction , 1976, SIAM J. Comput..