DMRT1 regulates human germline commitment

[1]  S. Kriaucionis,et al.  Modular Oxidation of Cytosine Modifications and Their Application in Direct and Quantitative Sequencing of 5-Hydroxymethylcytosine , 2023, Journal of the American Chemical Society.

[2]  M. Surani,et al.  Specification of human germ cell fate with enhanced progression capability supported by hindgut organoids. , 2023, Cell reports.

[3]  Christopher A. Penfold,et al.  Epigenetic resetting in the human germ line entails histone modification remodeling , 2023, Science advances.

[4]  V. Kristensen,et al.  Pioneer transcription factors are associated with the modulation of DNA methylation patterns across cancers , 2022, Epigenetics & Chromatin.

[5]  H. Nakauchi,et al.  Functional primordial germ cell–like cells from pluripotent stem cells in rats , 2022, Science.

[6]  Christopher A. Penfold,et al.  Sequential enhancer state remodelling defines human germline competence and specification , 2022, Nature Cell Biology.

[7]  L. Shuai,et al.  Germline specification from pluripotent stem cells , 2022, Stem cell research & therapy.

[8]  Christopher A. Penfold,et al.  Tracing the emergence of primordial germ cells from bilaminar disc rabbit embryos and pluripotent stem cells. , 2021, Cell reports.

[9]  M. Saitou,et al.  Mammalian in vitro gametogenesis , 2021, Science.

[10]  F. Pelegri,et al.  Primordial Germ Cell Specification in Vertebrate Embryos: Phylogenetic Distribution and Conserved Molecular Features of Preformation and Induction , 2021, Frontiers in Cell and Developmental Biology.

[11]  K. Woltjen,et al.  DMRT1-mediated reprogramming drives development of cancer resembling human germ cell tumors with features of totipotency , 2021, Nature Communications.

[12]  M. Herbert,et al.  Single-cell roadmap of human gonadal development , 2021, Nature.

[13]  D. Page,et al.  Germ cell determination and the developmental origin of germ cell tumors. , 2021, Development.

[14]  O. Elemento,et al.  QSER1 protects DNA methylation valleys from de novo methylation , 2021, Science.

[15]  R. Lovell-Badge,et al.  Primary sex determination in birds depends on DMRT1 dosage, but gonadal sex does not determine adult secondary sex characteristics , 2021, Proceedings of the National Academy of Sciences.

[16]  Zhiyuan Hu,et al.  Subtraction-free and bisulfite-free specific sequencing of 5-methylcytosine and its oxidized derivatives at base resolution , 2021, Nature Communications.

[17]  Raphael Gottardo,et al.  Integrated analysis of multimodal single-cell data , 2020, Cell.

[18]  Kei Sato,et al.  Reconstitution of prospermatogonial specification in vitro from human induced pluripotent stem cells , 2020, Nature Communications.

[19]  Zachary D. Smith,et al.  TETs compete with DNMT3 activity in pluripotent cells at thousands of methylated somatic enhancers , 2020, Nature Genetics.

[20]  H. Nakauchi,et al.  Germline development in rat revealed by visualization and deletion of Prdm14 , 2020, Development.

[21]  D. Page,et al.  Mammalian germ cells are determined after PGC colonization of the nascent gonad , 2019, Proceedings of the National Academy of Sciences.

[22]  David McDonald,et al.  Decoding human fetal liver haematopoiesis , 2019, Nature.

[23]  L. Looijenga,et al.  Human germ cell tumours from a developmental perspective , 2019, Nature Reviews Cancer.

[24]  E. Bikoff,et al.  Genetic dissection of Nodal and Bmp signalling requirements during primordial germ cell development in mouse , 2018, Nature Communications.

[25]  Fan Zhang,et al.  Fast, sensitive, and accurate integration of single cell data with Harmony , 2018, bioRxiv.

[26]  I. Okamoto,et al.  Generation of human oogonia from induced pluripotent stem cells in vitro , 2018, Science.

[27]  Lee B. Smith,et al.  DMRT1 repression using a novel approach to genetic manipulation induces testicular dysgenesis in human fetal gonads , 2018, Human reproduction.

[28]  M. Hemberg,et al.  scmap: projection of single-cell RNA-seq data across data sets , 2018, Nature Methods.

[29]  Fabian J Theis,et al.  SCANPY: large-scale single-cell gene expression data analysis , 2018, Genome Biology.

[30]  B. Roschitzki,et al.  Isoform‐specific localization of DNMT3A regulates DNA methylation fidelity at bivalent CpG islands , 2017, The EMBO journal.

[31]  S. Henikoff,et al.  Targeted in situ genome-wide profiling with high efficiency for low cell numbers , 2018, Nature Protocols.

[32]  Christopher D. Brown,et al.  Transposable elements are the primary source of novelty in primate gene regulation , 2017, Genome research.

[33]  Rong Li,et al.  Single-Cell RNA-Seq Analysis Maps Development of Human Germline Cells and Gonadal Niche Interactions. , 2017, Cell stem cell.

[34]  M. Hagiwara,et al.  In vitro expansion of mouse primordial germ cell‐like cells recapitulates an epigenetic blank slate , 2017, The EMBO journal.

[35]  Anastasiya Sybirna,et al.  Principles of early human development and germ cell program from conserved model systems , 2017, Nature.

[36]  F. Tang,et al.  DNA methylation and chromatin accessibility profiling of mouse and human fetal germ cells , 2016, Cell Research.

[37]  N. Shiraki,et al.  The Germ Cell Fate of Cynomolgus Monkeys Is Specified in the Nascent Amnion. , 2016, Developmental cell.

[38]  Pao-Yang Chen,et al.  Stage-Specific Demethylation in Primordial Germ Cells Safeguards against Precocious Differentiation. , 2016, Developmental cell.

[39]  M. Surani,et al.  Specification and epigenetic programming of the human germ line , 2016, Nature Reviews Genetics.

[40]  M. Latronico,et al.  DNA hydroxymethylation controls cardiomyocyte gene expression in development and hypertrophy , 2016, Nature Communications.

[41]  Charles H. Yoon,et al.  Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq , 2016, Science.

[42]  S. Yamanaka,et al.  Robust In Vitro Induction of Human Germ Cell Fate from Pluripotent Stem Cells. , 2015, Cell stem cell.

[43]  F. Tang,et al.  The Transcriptome and DNA Methylome Landscapes of Human Primordial Germ Cells , 2015, Cell.

[44]  M. Azim Surani,et al.  A Unique Gene Regulatory Network Resets the Human Germline Epigenome for Development , 2015, Cell.

[45]  K. Zhang,et al.  DNA Demethylation Dynamics in the Human Prenatal Germline , 2015, Cell.

[46]  Hideki Aihara,et al.  An ancient protein-DNA interaction underlying metazoan sex determination , 2015, Nature Structural &Molecular Biology.

[47]  J. Rinn,et al.  Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells , 2015, Nature Genetics.

[48]  A. Oudenaarden,et al.  Licensing of Primordial Germ Cells for Gametogenesis Depends on Genital Ridge Signaling , 2015, PLoS genetics.

[49]  Lukas Burger,et al.  Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation , 2015, Nature.

[50]  M. Azim Surani,et al.  SOX17 Is a Critical Specifier of Human Primordial Germ Cell Fate , 2015, Cell.

[51]  Janet Kelso,et al.  leeHom: adaptor trimming and merging for Illumina sequencing reads , 2014, Nucleic acids research.

[52]  I. Weissman,et al.  Efficient endoderm induction from human pluripotent stem cells by logically directing signals controlling lineage bifurcations. , 2014, Cell stem cell.

[53]  William A. Pastor,et al.  Distinct roles of the methylcytosine oxidases Tet1 and Tet2 in mouse embryonic stem cells , 2014, Proceedings of the National Academy of Sciences.

[54]  Wei Li,et al.  Large conserved domains of low DNA methylation maintained by Dnmt3a , 2013, Nature Genetics.

[55]  I. Amit,et al.  Derivation of novel human ground state naive pluripotent stem cells , 2013, Nature.

[56]  E. Dejana,et al.  VE-cadherin and endothelial adherens junctions: active guardians of vascular integrity. , 2013, Developmental cell.

[57]  M. Griswold,et al.  Interaction between DMRT1 function and genetic background modulates signaling and pluripotency to control tumor susceptibility in the fetal germ line. , 2013, Developmental biology.

[58]  J. Jui,et al.  Dynamics of 5-hydroxymethylcytosine and chromatin marks in Mammalian neurogenesis. , 2013, Cell reports.

[59]  T. Down,et al.  Germline DNA Demethylation Dynamics and Imprint Erasure Through 5-Hydroxymethylcytosine , 2013, Science.

[60]  K. Kurimoto,et al.  Replication‐coupled passive DNA demethylation for the erasure of genome imprints in mice , 2012, The EMBO journal.

[61]  David G Hendrickson,et al.  Differential analysis of gene regulation at transcript resolution with RNA-seq , 2012, Nature Biotechnology.

[62]  E. Rajpert-De Meyts,et al.  Analysis of meiosis regulators in human gonads: a sexually dimorphic spatio-temporal expression pattern suggests involvement of DMRT1 in meiotic entry. , 2012, Molecular human reproduction.

[63]  Colm E. Nestor,et al.  Promoter DNA methylation couples genome-defence mechanisms to epigenetic reprogramming in the mouse germline , 2012, Development.

[64]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[65]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[66]  A. J. Hooten,et al.  Associations between variants in KITLG, SPRY4, BAK1, and DMRT1 and pediatric germ cell tumors , 2012, Genes, chromosomes & cancer.

[67]  D. Zarkower,et al.  Sex and the singular DM domain: insights into sexual regulation, evolution and plasticity , 2012, Nature Reviews Genetics.

[68]  M. Griswold,et al.  DMRT1 promotes oogenesis by transcriptional activation of Stra8 in the mammalian fetal ovary. , 2011, Developmental biology.

[69]  Keji Zhao,et al.  Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells. , 2011, Genes & development.

[70]  D. Petersen,et al.  The human fatty acid-binding protein family: Evolutionary divergences and functions , 2011, Human Genomics.

[71]  Deborah Hughes,et al.  Variants near DMRT1, TERT and ATF7IP are associated with testicular germ cell cancer , 2010, Nature Genetics.

[72]  C. Glass,et al.  Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. , 2010, Molecular cell.

[73]  Matthew S. Cook,et al.  The DM domain protein DMRT1 is a dose-sensitive regulator of fetal germ cell proliferation and pluripotency , 2009, Proceedings of the National Academy of Sciences.

[74]  Davis J. McCarthy,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[75]  H. Yonekawa,et al.  Evidence for crucial role of hindgut expansion in directing proper migration of primordial germ cells in mouse early embryogenesis. , 2009, Developmental biology.

[76]  H. Ohta,et al.  A Signaling Principle for the Specification of the Germ Cell Lineage in Mice , 2009, Cell.

[77]  G. Duester Retinoic Acid Synthesis and Signaling during Early Organogenesis , 2008, Cell.

[78]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[79]  T. Karpova,et al.  Sex-Specific Differences in Mouse DMRT1 Expression Are Both Cell Type- and Stage-Dependent During Gonad Development1 , 2007, Biology of reproduction.

[80]  R. Braun,et al.  Pathway to Totipotency: Lessons from Germ Cells , 2006, Cell.

[81]  E. Li,et al.  DNA methylation is a primary mechanism for silencing postmigratory primordial germ cell genes in both germ cell and somatic cell lineages , 2006, Development.

[82]  Jerilyn A. Walker,et al.  SVA elements: a hominid-specific retroposon family. , 2005, Journal of molecular biology.

[83]  E. Kroon,et al.  Efficient differentiation of human embryonic stem cells to definitive endoderm , 2005, Nature Biotechnology.

[84]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[85]  C. Mummery,et al.  Altered primordial germ cell migration in the absence of transforming growth factor beta signaling via ALK5. , 2005, Developmental biology.

[86]  K. Choo,et al.  Building the centromere: from foundation proteins to 3D organization. , 2004, Trends in cell biology.

[87]  Yoshiakira Kanai,et al.  Depletion of definitive gut endoderm in Sox17-null mutant mice. , 2002, Development.

[88]  J. Rossant,et al.  The retinoic acid-inactivating enzyme CYP26 is essential for establishing an uneven distribution of retinoic acid along the anterio-posterior axis within the mouse embryo. , 2001, Genes & development.

[89]  H. van Tilbeurgh,et al.  Expression, purification, and crystal structure determination of recombinant human epidermal-type fatty acid binding protein. , 1999, Biochemistry.

[90]  N. Nakatsuji,et al.  Retinoic acid is a potent growth activator of mouse primordial germ cells in vitro. , 1995, Developmental biology.

[91]  S. Nishikawa,et al.  Effect of Steel factor and leukaemia inhibitory factor on murine primordial germ cells in culture , 1991, Nature.

[92]  C. Brannan,et al.  Requirement for mast cell growth factor for primordial germ cell survival in culture , 1991, Nature.

[93]  T. Fujimoto,et al.  The origin, migration and fine morphology of human primordial germ cells , 1977, The Anatomical record.

[94]  S. Cánovas,et al.  Progress towards human primordial germ cell specification in vitro , 2017, Molecular human reproduction.

[95]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..