Electronic structure and polarizability of metallic nanoshells

Abstract An efficient method for the calculation of the electronic structure of metallic nanoshells is developed. The method is applied to a large nanoshell (of 10 nm in diameter) containing more than 2.5×10 4 conduction electrons. The calculations show that the density of states of the nanoshell is relatively bulk-like. The frequency dependent polarizability is calculated and shown to display strong confinement effects and features similar to what is predicted by semi-classical electrodynamic theory.

[1]  S. Apell,et al.  Collective resonances of the molecule: effects of electron-density profile , 1996 .

[2]  M. Dresselhaus,et al.  Physical properties of carbon nanotubes , 1998 .

[3]  Nieminen,et al.  Photoabsorption of atoms inside C60. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[4]  G. Bertsch An RPA program for jellium spheres , 1990 .

[5]  Wendin,et al.  Many-electron effects in BaC60: Collective response and molecular effects in optical conductivity and photoionization. , 1993, Physical review. B, Condensed matter.

[6]  S. L. Westcott,et al.  Adsorbate-Induced Quenching of Hot Electrons in Gold Core−Shell Nanoparticles , 2001 .

[7]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[8]  M. Michalewicz,et al.  Collective electronic excitations on C60 molecule , 1992 .

[9]  Lucas,et al.  Polarization waves and van der Waals cohesion of C60 fullerite. , 1992, Physical review. B, Condensed matter.

[10]  Naomi J. Halas,et al.  Nanoengineering of optical resonances , 1998 .

[11]  Andrew Zangwill,et al.  Density-functional approach to local-field effects in finite systems: Photoabsorption in the rare gases , 1980 .

[12]  A. Fetter,et al.  Quantum Theory of Many-Particle Systems , 1971 .

[13]  D. Tománek,et al.  Electronic structure of single-wall, multiwall, and filled carbon nanotubes , 1997 .

[14]  S. L. Westcott,et al.  Infrared extinction properties of gold nanoshells , 1999 .

[15]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[16]  G. Barton,et al.  Plasma spectroscopy proposed for C60 and C70 , 1991 .

[17]  Emil Prodan,et al.  Exchange and correlations effects in small metallic nanoshells , 2001 .

[18]  藤田 純一,et al.  A.L. Fetter and J.D. Walecka: Quantum Theory of Many-Particle Systems, McGraw-Hill Book Co., New York, 1971, 601頁, 15×23cm, 7,800円. , 1971 .

[19]  Á. Rubio,et al.  Assessment of exchange-correlation functionals for the calculation of dynamical properties of small clusters in time-dependent density functional theory , 2001, cond-mat/0102234.

[20]  Naomi J. Halas,et al.  Plasmon Resonance Shifts of Au-Coated Au 2 S Nanoshells: Insight into Multicomponent Nanoparticle Growth , 1997 .

[21]  Wang,et al.  Collective level crossings on nanotubes and multipole excitations on fullerenes. , 1994, Physical review. B, Condensed matter.

[22]  E. Baerends,et al.  Analysis of the polarizability and optical properties of , 1996 .

[23]  Malcolm J. Stott,et al.  Linear-response theory within the density-functional formalism: Application to atomic polarizabilities , 1980 .