Fabrication of carbon nanoscrolls from monolayer graphene.

A simple way of synthesizing carbon nanotube (CNT)/graphene (GN) nanoscroll core/shell nanostructures is demonstrated using molecular dynamics (MD) simulations. The simulations show that GN sheets can fully self-scroll onto CNTs when the CNT radius is larger than a threshold of about 10 A, forming a stable core/shell structure. Increasing the length of the GN sheet results in multilayered carbon nanoscroll (CNS) shells that exhibit a tubular structure similar to that of multiwall CNTs. The distances between the CNT and the GN wall or adjacent GN walls are about 3.4 A. It is found that the van der Waals force plays an important role in the formation of the CNT/GN nanoscroll core/shell-composite nanostructures. However, the chirality of the CNT and the GN sheet does not affect the self-scrolling process, which thus provides a simple way of controlling the chirality and physical properties of the resulting core/shell structure. It is expected that this preparation method of CNT/GN nanoscroll core/shell composites will lead to further development of a broad new class of carbon/carbon core/shell composites with enhanced properties and even introduce new functionalities to composite materials.

[1]  F. Guinea,et al.  Effect of external conditions on the structure of scrolled graphene edges , 2010, 1002.3418.

[2]  P. Král,et al.  Nanodroplet activated and guided folding of graphene nanostructures. , 2009, Nano letters.

[3]  Steven W. Cranford,et al.  Meso-origami: Folding multilayer graphene sheets , 2009 .

[4]  Huijuan Chen,et al.  The core/shell composite nanowires produced by self-scrolling carbon nanotubes onto copper nanowires. , 2009, ACS nano.

[5]  Xu Xie,et al.  Controlled fabrication of high-quality carbon nanoscrolls from monolayer graphene. , 2009, Nano letters.

[6]  A. Reina,et al.  Controlled Formation of Sharp Zigzag and Armchair Edges in Graphitic Nanoribbons , 2009, Science.

[7]  Quan Wang,et al.  Atomic transportation via carbon nanotubes. , 2009, Nano letters.

[8]  Jiuning Hu,et al.  Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study. , 2009, Nano letters.

[9]  S. Adhikari,et al.  Effective elastic mechanical properties of single layer graphene sheets , 2009, Nanotechnology.

[10]  X. Bai,et al.  Synthesis of Carbon/Carbon Core/Shell Nanotubes with a High Specific Surface Area , 2009 .

[11]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[12]  Y. Bando,et al.  Synthesis, structure, and multiply enhanced field-emission properties of branched ZnS nanotube-in nanowire core-shell heterostructures. , 2008, ACS nano.

[13]  M. I. Katsnelson,et al.  Chaotic Dirac Billiard in Graphene Quantum Dots , 2007, Science.

[14]  A. Marini,et al.  Optical properties of graphene nanoribbons: The role of many-body effects , 2007, 0706.0916.

[15]  Liwei Lin,et al.  An electrothermal carbon nanotube gas sensor. , 2007, Nano letters.

[16]  V. Mochalin,et al.  Carbon nanoscrolls produced from acceptor-type graphite intercalation compounds , 2007 .

[17]  John M. Zavada,et al.  Prospects for rare earth doped GaN lasers on Si , 2007 .

[18]  Emmanuel Tylianakis,et al.  Carbon nanoscrolls: a promising material for hydrogen storage. , 2007, Nano letters.

[19]  Yunqi Liu,et al.  Synthesis and Device Integration of Carbon Nanotube/Silica Core−Shell Nanowires , 2007 .

[20]  U Zeitler,et al.  Room-Temperature Quantum Hall Effect in Graphene , 2007, Science.

[21]  K. Liew,et al.  Inelastic buckling of carbon nanotubes , 2007 .

[22]  Jing Lu,et al.  Structural and Electronic Study of Nanoscrolls Rolled up by a Single Graphene Sheet , 2007 .

[23]  K. Novoselov,et al.  Detection of individual gas molecules adsorbed on graphene. , 2006, Nature materials.

[24]  M. Katsnelson Graphene: Carbon in Two Dimensions , 2006, cond-mat/0612534.

[25]  D. Galvão,et al.  Prediction of giant electroactuation for papyruslike carbon nanoscroll structures: First-principles calculations , 2006 .

[26]  K. M. Liew,et al.  Equilibrium configuration and continuum elastic properties of finite sized graphene , 2006 .

[27]  Y. Kaburagi,et al.  Thin graphite skin on glass-like carbon fiber prepared at high temperature from cellulose fiber , 2005 .

[28]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[29]  H. Pan,et al.  Ab initio study of electronic and optical properties of multiwall carbon nanotube structures made up of a single rolled-up graphite sheet , 2005 .

[30]  D. Resasco,et al.  Single-walled carbon nanotubes of controlled diameter and bundle size and their field emission properties. , 2005, The journal of physical chemistry. B.

[31]  H. Garmestani,et al.  Adhesion energy in carbon nanotube-polyethylene composite: Effect of chirality , 2005 .

[32]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[33]  Ray H. Baughman,et al.  Structure and dynamics of carbon nanoscrolls , 2004 .

[34]  Rajagopal Ramasubramaniam,et al.  Homogeneous carbon nanotube/polymer composites for electrical applications , 2003 .

[35]  Joselito M. Razal,et al.  Super-tough carbon-nanotube fibres , 2003, Nature.

[36]  M. Meyyappan,et al.  Carbon Nanotube Nanoelectrode Array for Ultrasensitive DNA Detection , 2003 .

[37]  Richard B. Kaner,et al.  A Chemical Route to Carbon Nanoscrolls , 2003, Science.

[38]  T. Akita,et al.  A new route to carbon nanotubes , 2003 .

[39]  Kong,et al.  Intrinsic electrical properties of individual single-walled carbon nanotubes with small band gaps , 2000, Physical review letters.

[40]  Angel Rubio,et al.  Single‐Walled Carbon Nanotube–Polymer Composites: Strength and Weakness , 2000 .

[41]  H. Sun,et al.  COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase ApplicationsOverview with Details on Alkane and Benzene Compounds , 1998 .

[42]  T. Ebbesen,et al.  Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.

[43]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[44]  H. C. Andersen Molecular dynamics simulations at constant pressure and/or temperature , 1980 .

[45]  Roger Bacon,et al.  Growth, Structure, and Properties of Graphite Whiskers , 1960 .