Weighted Repeated Median Smoothing and Filtering

We propose weighted repeated median filters and smoothers for robust nonparametric regression in general and for robust online signal extraction from time series in particular. The new methods allow us to remove outlying sequences and to preserve discontinuities (shifts) in the underlying regression function (the signal) in the presence of local linear trends. Suitable weighting of the observations according to their distances in the design space reduces the bias arising from nonlinearities and improves the efficiency using larger bandwidths, while still distinguishing long-term shifts from outlier sequences. Other localized robust regression techniques like S, M, and MM estimators as well as weighted L 1 regression, are examined for comparison.

[1]  Young K. Truong,et al.  ROBUST NONPARAMETRIC FUNCTION ESTIMATION , 1994 .

[2]  P. L. Davies,et al.  Breakdown and groups , 2005, math/0508497.

[3]  Ursula Gather,et al.  Robust signal extraction for on-line monitoring data , 2004 .

[4]  F. Scholz Weighted Median Regression Estimates , 1978 .

[5]  Xuming He TAIL BEHAVIOR OF REGRESSION ESTIMATORS AND THEIR BREAKDOWN POINTS , 1990 .

[6]  Jianqing Fan,et al.  Robust Non-parametric Function Estimation , 1994 .

[7]  Azriel Rosenfeld,et al.  Robust regression methods for computer vision: A review , 1991, International Journal of Computer Vision.

[8]  T. Hastie,et al.  Local Regression: Automatic Kernel Carpentry , 1993 .

[9]  Jaakko Astola,et al.  Optimal weighted median filtering under structural constraints , 1995, IEEE Trans. Signal Process..

[10]  Ursula Gather,et al.  Repeated median and hybrid filters , 2006, Comput. Stat. Data Anal..

[11]  Ursula Gather,et al.  Pattern Detection in Intensive Care Monitoring Time Series with Autoregressive Models: Influence of the Model Order , 2002 .

[12]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[13]  S. P. Ellis,et al.  Leverage and Breakdown in L 1 Regression , 1992 .

[14]  Stefan Van Aelst,et al.  Positive-Breakdown Robust Methods in Computer Vision , 1999 .

[15]  R. Koenker,et al.  The Gaussian hare and the Laplacian tortoise: computability of squared-error versus absolute-error estimators , 1997 .

[16]  Roland Fried,et al.  Computing the update of the repeated median regression line in linear time , 2003, Inf. Process. Lett..

[17]  Jianqing Fan Design-adaptive Nonparametric Regression , 1992 .

[18]  A. Siegel Robust regression using repeated medians , 1982 .

[19]  Jochen Einbeck,et al.  Online monitoring with local smoothing methods and adaptive ridging , 2003 .

[20]  M. Braga,et al.  Exploratory Data Analysis , 2018, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[21]  Roland Fried,et al.  Online signal extraction by robust linear regression , 2006, Comput. Stat..

[22]  Victor J. Yohai,et al.  Functional stability of one-step GM-estimators in approximately linear regression , 1998 .

[23]  C. Müller,et al.  Breakdown points and variation exponents of robust $M$-estimators in linear models , 1999 .

[24]  D. W. Scott,et al.  The L 1 Method for Robust Nonparametric Regression , 1994 .

[25]  Manfred W. Padberg,et al.  The Finite Sample Breakdown Point of #8467;1-Regression , 2004, SIAM J. Optim..

[26]  W. Härdle,et al.  Robust Non-parametric Function Fitting , 1984 .

[27]  Jianqing Fan,et al.  On curve estimation by minimizing mean absolute deviation and its implications , 1994 .