Response clustering in transient stochastic synchronization and desynchronization of coupled neuronal bursters.

We studied the transient dynamics of synchronized coupled neuronal bursters subjected to repeatedly applied stimuli, using a hybrid neuroelectronic system of paddlefish electroreceptors. We show experimentally that the system characteristically undergoes poststimulus transients, in which the relative phases of the oscillators may be grouped in several clusters, traversing alternate phase trajectories. These signature transient dynamics can be detected and characterized quantitatively using specific statistical measures based on a stochastic approach to transient oscillator responses.

[1]  G. Laurent Dynamical representation of odors by oscillating and evolving neural assemblies , 1996, Trends in Neurosciences.

[2]  A. Benabid,et al.  Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus , 1991, The Lancet.

[3]  A. Selverston,et al.  Synchronous Behavior of Two Coupled Biological Neurons , 1998, chao-dyn/9811010.

[4]  C Pantev,et al.  Stimulus induced desynchronization of human auditory 40-Hz steady-state responses. , 2005, Journal of neurophysiology.

[5]  Peter A. Tass,et al.  A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations , 2003, Biological Cybernetics.

[6]  P. Tass Stochastic phase resetting of two coupled phase oscillators stimulated at different times. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  G. Laurent,et al.  Distinct Mechanisms for Synchronization and Temporal Patterning of Odor-Encoding Neural Assemblies , 1996, Science.

[8]  Simon Hanslmayr,et al.  Distinguishing the evoked response from phase reset: A comment to Mäkinen et al. , 2006, NeuroImage.

[9]  Eugene M. Izhikevich,et al.  Neural excitability, Spiking and bursting , 2000, Int. J. Bifurc. Chaos.

[10]  O. Jensen,et al.  Posterior α activity is not phase-reset by visual stimuli , 2006 .

[11]  Pablo Varona,et al.  Dynamics of two electrically coupled chaotic neurons: Experimental observations and model analysis , 2001, Biological Cybernetics.

[12]  J. Wersäll,et al.  The lorenzinian ampullae of Polyodon spathula , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[13]  M. Rosenblum,et al.  Controlling synchronization in an ensemble of globally coupled oscillators. , 2004, Physical review letters.

[14]  P. Tass,et al.  Stimulus-locked responses of two phase oscillators coupled with delayed feedback. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  S. Schiff,et al.  Decreased Neuronal Synchronization during Experimental Seizures , 2002, The Journal of Neuroscience.

[16]  E. Vaadia,et al.  Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates , 1998, Trends in Neurosciences.

[17]  H. Bergman,et al.  Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the MPTP model of parkinsonism. , 1995, Journal of neurophysiology.

[18]  P. A. Tass,et al.  Stimulus-locked transient phase dynamics, synchronization and desynchronization of two oscillators , 2002 .

[19]  Kuno Kirschfeld,et al.  The physical basis of alpha waves in the electroencephalogram and the origin of the “Berger effect” , 2005, Biological Cybernetics.

[20]  Robert J Butera,et al.  Neuronal oscillators in aplysia californica that demonstrate weak coupling in vitro. , 2005, Physical review letters.

[21]  H. Bergman,et al.  The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. , 1994, Journal of neurophysiology.

[22]  K. Sigvardt,et al.  Temporal evolution of oscillations and synchrony in GPi/muscle pairs in Parkinson's disease. , 2005, Journal of neurophysiology.

[23]  W Singer,et al.  Visual feature integration and the temporal correlation hypothesis. , 1995, Annual review of neuroscience.

[24]  A. Pikovsky,et al.  Synchronization: Theory and Application , 2003 .

[25]  Werner Lutzenberger,et al.  Transient and phase-locked evoked magnetic fields in response to periodic acoustic signals , 2004, Neuroreport.

[26]  Peter A Tass,et al.  Stochastic phase resetting of stimulus-locked responses of two coupled oscillators: transient response clustering, synchronization, and desynchronization. , 2003, Chaos.

[27]  Christian Hauptmann,et al.  Effective desynchronization by nonlinear delayed feedback. , 2005, Physical review letters.

[28]  Kurths,et al.  Phase synchronization of chaotic oscillators. , 1996, Physical review letters.

[29]  Peter A. Tass,et al.  Desynchronization of brain rhythms with soft phase-resetting techniques , 2002, Biological Cybernetics.

[30]  P. Tass Phase Resetting in Medicine and Biology , 1999 .

[31]  J. Rinzel,et al.  Rhythmogenic effects of weak electrotonic coupling in neuronal models. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Alexander B Neiman,et al.  Two distinct types of noisy oscillators in electroreceptors of paddlefish. , 2004, Journal of neurophysiology.

[33]  Alexander B Neiman,et al.  Synchronization of noise-induced bursts in noncoupled sensory neurons. , 2002, Physical review letters.

[34]  T. Sejnowski,et al.  Dynamic Brain Sources of Visual Evoked Responses , 2002, Science.

[35]  Simon Hanslmayr,et al.  Alpha phase reset contributes to the generation of ERPs. , 2006, Cerebral cortex.

[36]  G. Buzsáki,et al.  Spike phase precession persists after transient intrahippocampal perturbation , 2005, Nature Neuroscience.

[37]  Robert J Butera,et al.  MRCI: a flexible real-time dynamic clamp system for electrophysiology experiments , 2004, Journal of Neuroscience Methods.

[38]  R. Adler A Study of Locking Phenomena in Oscillators , 1946, Proceedings of the IRE.

[39]  L. Glass Synchronization and rhythmic processes in physiology , 2001, Nature.