Topological Inference of Teleology: Deriving Function from Structure via Evidential Reasoning

Abstract Reasoning about the physical world is a central human cognitive activity. One aspect of such reasoning is the inference of function from the structure of the artifacts one encounters. In this article we present the Topological iNference of Teleology (T n T) theory, an efficient means of inferring function from structure. T n T comprises a representation language for structure and function that enables the construction, extension, and maintenance of the domain-specific knowledge base required for such inferences, and an evidential reasoning algorithm. This reasoning algorithm trades deductive soundness for efficiency and flexibility. We discuss the representations and algorithm in depth and present an implementation of T n T, in a system called C arnot . C arnot demonstrates quadratic performance and broad coverage of the domain of single-substance thermodynamic cycles, including all such cycles presented in a standard text on the subject. We conclude with a discussion of C arnot -based coaching tools that we have implemented as part of our publicly available CyclePad system, which is a design-based learning environment for thermodynamics.

[1]  Alberto Riva,et al.  Belief Maintenance in Bayesian Networks , 1994, UAI.

[2]  Ashok K. Goel,et al.  Model-Based Learning of Structural Indices to Design Cases , 1993, IJCAI 1993.

[3]  Kenneth D. Forbus,et al.  Building Problem Solvers , 1993 .

[4]  B. Chandrasekaran,et al.  Understanding Behavior Using Consolidation , 1985, IJCAI.

[5]  Gerald Jay Sussman,et al.  CONSTRAINTS - A Language for Expressing Almost-Hierarchical Descriptions , 1980, Artif. Intell..

[6]  Robert P. Goldman,et al.  A Language for Construction of Belief Networks , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Richard Fikes,et al.  CFRL: A Language for Specifying the Causal Functionality of Engineered Devices , 1993, AAAI.

[8]  John Seely Brown,et al.  Diagnostic Models for Procedural Bugs in Basic Mathematical Skills , 1978, Cogn. Sci..

[9]  Johan de Kleer,et al.  Theories of Causal Ordering , 1986, Artif. Intell..

[10]  Kurt VanLehn,et al.  Repair Theory: A Generative Theory of Bugs in Procedural Skills , 1980, Cogn. Sci..

[11]  R. W. Haywood Analysis of Engineering Cycles: Power, Refrigerating and Gas Liquefaction Plant , 1991 .

[12]  Balakrishnan Chandrasekaran,et al.  Machine understanding of devices: causal explanation of diagnostic conclusions , 1989 .

[13]  Kenneth D. Forbus,et al.  Towards a Computational Model of Evaluating and Using Analogical Inferences , 1997 .

[14]  B. Reiser,et al.  Cognitive and Motivational Consequences of Tutoring and Discovery Learning , 1998 .

[15]  David A. McAllester Truth Maintenance , 1990, AAAI.

[16]  Eric Horvitz,et al.  Bounded Conditioning: Flexible Inference for Decisions under Scarce Resources , 2013, UAI 1989.

[17]  Roger C. Schank,et al.  Explanation Patterns: Understanding Mechanically and Creatively , 1986 .

[18]  Dean Allemang,et al.  Understanding programs as devices , 1990 .

[19]  Nils J. Nilsson,et al.  Probabilistic Logic * , 2022 .

[20]  Brian Falkenhainer,et al.  Compositional Modeling: Finding the Right Model for the Job , 1991, Artif. Intell..

[21]  Max Henrion,et al.  Propagating uncertainty in bayesian networks by probabilistic logic sampling , 1986, UAI.

[22]  David W. Franke,et al.  A Theory of Teleology , 1992 .

[23]  Steffen L. Lauritzen,et al.  Bayesian updating in causal probabilistic networks by local computations , 1990 .

[24]  Randall Davis,et al.  Diagnosis Via Causal Reasoning: Paths of Interaction and the Locality Principle , 1989, AAAI.

[25]  Ashok K. Goel,et al.  Generic Teleological Mechanisms and their Use in Case Adaptation , 1992 .

[26]  Ángel Viña,et al.  Guardian: A Prototype Intelligent Agent for Intensive-Care Monitoring , 1994, AAAI.

[27]  J. Kleer Qualitative and Quantitative Knowledge in Classical Mechanics , 1975 .

[28]  B. Chandrasekaran,et al.  Functional Representation and Causal Processes , 1994, Adv. Comput..

[29]  David A. McAllester A Three Valued Truth Maintenance System. , 1978 .

[30]  D. Gentner Structure‐Mapping: A Theoretical Framework for Analogy* , 1983 .

[31]  David J. Spiegelhalter,et al.  Probabilistic Reasoning in Predictive Expert Systems , 1985, UAI.

[32]  Dean Allemang,et al.  Exploring the No-Function-In-Structure principle , 1989, J. Exp. Theor. Artif. Intell..

[33]  Marco F. Ramoni,et al.  Belief Maintenance with Probabilistic Logic , 1993 .

[34]  Benjamin Kuipers,et al.  Qualitative Simulation , 1986, Artificial Intelligence.

[35]  Raymond J. Mooney,et al.  Refinement-based student modeling and automated bug library construction , 1996 .

[36]  Kenneth D. Forbus The qualitative process engine , 1989 .

[37]  Leo Joskowicz,et al.  Efficient Compositional Modeling for Generating Causal Explanations , 1996, Artif. Intell..

[38]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[39]  Herbert A. Simon,et al.  Causality in Device Behavior , 1989, Artif. Intell..

[40]  Takashi Kiriyama,et al.  A Framework for Knowledge Intensive Engineering , 1994, CAST.

[41]  Johan de Kleer,et al.  How Circuits Work , 1984, Artif. Intell..

[42]  Benjamin J. Kaipers,et al.  Qualitative Simulation , 1989, Artif. Intell..

[43]  Vimla L. Patel,et al.  Forecasting Glucose Concentration in Diabetic Patients using Ignorant Belief Networks , 1994 .

[44]  Kenneth D. Forbus,et al.  Using Qualitative Physics to Build Articulate Software for Thermodynamics Education: A Preliminary Report , 1994, Interact. Learn. Environ..

[45]  A. Hasman,et al.  Probabilistic reasoning in intelligent systems: Networks of plausible inference , 1991 .

[46]  Brian C. Williams,et al.  Diagnosing Multiple Faults , 1987, Artif. Intell..

[47]  Brian Falkenhainer,et al.  Towards a general-purpose belief maintenance system , 1986, UAI.

[48]  R. E. Sonntag,et al.  Fundamentals of classical thermodynamics , 1973 .

[49]  Kenneth D. Forbus,et al.  MAC/FAC: A Model of Similarity-Based Retrieval , 1995, Cogn. Sci..

[50]  A. D. D. Groot Thought and Choice in Chess , 1978 .

[51]  Judea Pearl,et al.  Fusion, Propagation, and Structuring in Belief Networks , 1986, Artif. Intell..

[52]  M. Lind Multilevel Flow Modelling of Process Plant for Diagnosis and Control , 1982 .

[53]  Brian Falkenhainer,et al.  The Structure-Mapping Engine: Algorithm and Examples , 1989, Artif. Intell..

[54]  Kenneth D. Forbus Qualitative Process Theory , 1984, Artif. Intell..

[55]  Jan Eric Larsson,et al.  Diagnosis Based on Explicit Means-End Models , 1996, Artif. Intell..

[56]  Johan de Kleer,et al.  Causal and Teleological Reasoning In Circuit Recognition , 1979 .

[57]  Brian C. Williams,et al.  Interaction-Based Invention: Designing Novel Devices from First Principles , 1990, AAAI.

[58]  Gerald J. Sussman,et al.  Forward Reasoning and Dependency-Directed Backtracking in a System for Computer-Aided Circuit Analysis , 1976, Artif. Intell..

[59]  Eugene Charniak,et al.  Bayesian Networks without Tears , 1991, AI Mag..

[60]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.