Comprehensive size effect on PbSe quantum dot-doped liquid-core optical fiber

[1]  Lei Zhang,et al.  Stimulated emission and optical gain in PbSe quantum dot-doped liquid-core optical fiber based on multi-exciton state , 2016 .

[2]  William W. Yu,et al.  PbSe nanocrystal solar cells using bandgap engineering , 2015 .

[3]  William W. Yu,et al.  Near-infrared light emitting diodes using PbSe quantum dots , 2015 .

[4]  William W. Yu,et al.  High photocurrent PbSe solar cells with thin active layers , 2015 .

[5]  Cheng Cheng,et al.  Study of an Unsaturated PbSe QD-Doped Fiber Laser by Numerical Simulation and Experiment , 2014, IEEE Journal of Quantum Electronics.

[6]  William W. Yu,et al.  Temperature effect on colloidal PbSe quantum dot-filled liquid-core optical fiber , 2014 .

[7]  William W. Yu,et al.  Colloidal PbSe quantum dot-solution-filled liquid-core optical fiber for 1.55 μm telecommunication wavelengths , 2014, Nanotechnology.

[8]  William W. Yu,et al.  Real-time and on-chip surface temperature sensing of GaN LED chips using PbSe quantum dots. , 2013, Nanoscale.

[9]  William W. Yu,et al.  Multiparameter-dependent spontaneous emission in PbSe quantum dot-doped liquid-core multi-mode fiber , 2013, Journal of Nanoparticle Research.

[10]  Cheng Cheng,et al.  Experimental Realization of a PbSe-Quantum-Dot Doped Fiber Laser , 2013, IEEE Photonics Technology Letters.

[11]  S. Mahdavi,et al.  Time-dependent theory for random lasers in the presence of an inhomogeneous broadened gain medium such as PbSe quantum dots. , 2013, Applied optics.

[12]  Jingkang Wang,et al.  Near-infrared quantum dot light emitting diodes employing electron transport nanocrystals in a layered architecture , 2012, Nanotechnology.

[13]  Cheng Cheng,et al.  An optical fiber glass containing PbSe quantum dots , 2011 .

[14]  Jean-Marc Blondy,et al.  Semiconductor-doped liquid-core optical fiber. , 2011, Optics letters.

[15]  M. Kim,et al.  Linear and nonlinear optical properties of the PbSe quantum dots doped germano-silica glass optical fiber , 2010 .

[16]  William W. Yu,et al.  Size-dependent temperature effects on PbSe nanocrystals. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[17]  A. Bahrampour,et al.  An inhomogeneous theoretical model for analysis of PbSe quantum-dot-doped fiber amplifier , 2009 .

[18]  A. Franceschetti Structural and Electronic Properties of PbSe Nanocrystals from First Principles , 2008 .

[19]  Cheng Cheng,et al.  A Multiquantum-Dot-Doped Fiber Amplifier With Characteristics of Broadband, Flat Gain, and Low Noise , 2008, Journal of Lightwave Technology.

[20]  Cheng Cheng,et al.  Characteristics of bandwidth, gain and noise of a PbSe quantum dot-doped fiber amplifier , 2007 .

[21]  A. Zunger,et al.  The Excitonic Exchange Splitting and Radiative Lifetime in PbSe Quantum Dots , 2007 .

[22]  A. Q. Le Quang,et al.  Air-stable PbSe/PbS and PbSe/PbSexS1-x core-shell nanocrystal quantum dots and their applications. , 2006, The journal of physical chemistry. B.

[23]  Vicki L. Colvin,et al.  Preparation and Characterization of Monodisperse PbSe Semiconductor Nanocrystals in a Noncoordinating Solvent , 2004 .

[24]  Frank W. Wise,et al.  Optical Properties of Colloidal PbSe Nanocrystals , 2002 .

[25]  Ivo Vávra,et al.  Midinfrared surface-emitting PbSe'PbEuTe quantum-dot lasers , 2001 .

[26]  C. R. Giles,et al.  Modeling erbium-doped fiber amplifiers , 1991 .

[27]  P. Peterka,et al.  Theoretical modelling of S-band thulium-doped silica fibre amplifiers , 2004 .