Mechanical Multibody Systems with Deformable Components

The multibody system approach provides enhanced models of vehicles, robots, and air- and spacecrafts. Mixed systems consisting of both rigid and deformable bodies are aimed at growing demands for refined simulation. A basic modeling framework for this class of mechanical systems is presented which covers also inelastic material behavior. Moreover, the Differential-Algebraic Equations (DAEs) obtained from semidiscretization in space are classified and the application of DAE solvers is discussed. Two examples illustrate the simulation tasks and show the state-of-the-art in this field of scientific computing.

[1]  J. Z. Zhu,et al.  The finite element method , 1977 .

[2]  鷲津 久一郎 Variational methods in elasticity and plasticity , 1982 .

[3]  S. R. Bodner,et al.  Phenomenological Modeling of Hardening and Thermal Recovery in Metals , 1988 .

[4]  Ahmed A. Shabana,et al.  Dynamics of Multibody Systems , 2020 .

[5]  E. Fuehrer C. Eich,et al.  Numerical Methods in Multibody Dynamies , 1992 .

[6]  K. Popp,et al.  Approximate Analysis of Flexible Parts in Multibody Systems Using the Finite Element Method , 1993 .

[7]  C. Lubich Integration of stiff mechanical systems by Runge-Kutta methods , 1993 .

[8]  Oskar Wallrapp,et al.  Standardization of flexible body modeling in multibody system codes , 1994 .

[9]  Bernd Simeon,et al.  Modelling a flexible slider crank mechanism by a mixed system of DAEs and PDEs , 1996 .

[10]  T. Seibert Simulationstechniken zur Untersuchung der Streuungen bei der Identifikation der Parameter inelastischer Werkstoffmodelle , 1996 .

[11]  Peter Fritzen Numerische Behandlung nichtlinearer Probleme der Elastizitäts- und Plastizitätstheorie , 1997 .

[12]  Bernd Simeon,et al.  On computing smooth solutions of DAE'S for elastic multibody systems , 1999 .

[13]  Wieslaw Marszalek,et al.  The Index of an Infinite Dimensional Implicit System , 1999 .

[14]  O. Scherf,et al.  Viscoplastic Deformation from the DAE Perspective ‐ a Benchmark Problem , 1999 .

[15]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .