Automated Identification of Relevant Frontier Orbitals for Chemical Compounds and Processes.

Quantum-chemical multi-configurational methods are required for a proper description of static electron correlation, a phenomenon inherent to the electronic structure of molecules with multiple (near-)degenerate frontier orbitals. Here, we review how a property of these frontier orbitals, namely the entanglement entropy is related to static electron correlation. A subset of orbitals, the so-called active orbital space is an essential ingredient for all multi-configurational methods. We proposed an automated selection of this active orbital space, that would otherwise be a tedious and error prone manual procedure, based on entanglement measures. Here, we extend this scheme to demonstrate its capability for the selection of consistent active spaces for several excited states and along reaction coordinates.

[1]  C. Sandorfy The role of Rydberg states in spectroscopy and photochemistry : low and high Rydberg states , 1999 .

[2]  Wataru Mizukami,et al.  Density matrix renormalization group for ab initio calculations and associated dynamic correlation methods: A review of theory and applications , 2015 .

[3]  Stéphane Redon,et al.  Interactive chemical reactivity exploration. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[4]  Timothée Ewart,et al.  Matrix product state applications for the ALPS project , 2014, Comput. Phys. Commun..

[5]  Björn O. Roos,et al.  Second-order perturbation theory with a complete active space self-consistent field reference function , 1992 .

[6]  Michael W. Schmidt,et al.  Are atoms intrinsic to molecular electronic wavefunctions? III. Analysis of FORS configurations , 1982 .

[7]  B. Roos,et al.  How to Select Active Space for Multiconfigurational Quantum Chemistry , 2011 .

[8]  Ali Alavi,et al.  Approaching chemical accuracy using full configuration-interaction quantum Monte Carlo: a study of ionization potentials. , 2010, The Journal of chemical physics.

[9]  D. Dixon,et al.  Further benchmarks of a composite, convergent, statistically calibrated coupled-cluster-based approach for thermochemical and spectroscopic studies , 2012 .

[10]  Markus Reiher,et al.  Spin-adapted matrix product states and operators. , 2016, The Journal of chemical physics.

[11]  D. Tew,et al.  Sub-meV accuracy in first-principles computations of the ionization potentials and electron affinities of the atoms H to Ne , 2010 .

[12]  M. Field,et al.  Towards an accurate ab initio calculation of the transition state structures of the Diels–Alder reaction , 1985 .

[13]  F. Verstraete,et al.  Tensor product methods and entanglement optimization for ab initio quantum chemistry , 2014, 1412.5829.

[14]  Peter Pulay,et al.  Selection of active spaces for multiconfigurational wavefunctions. , 2015, The Journal of chemical physics.

[15]  Per-Olof Widmark,et al.  Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions , 1990 .

[16]  Roland Lindh,et al.  Main group atoms and dimers studied with a new relativistic ANO basis set , 2004 .

[17]  H. Lischka,et al.  The Diels-Alder reaction of ethene and 1,3-butadiene: an extended multireference ab initio investigation. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[18]  Dimitri Van Neck,et al.  The density matrix renormalization group for ab initio quantum chemistry , 2014, The European Physical Journal D.

[19]  Huaiyu Zhang,et al.  Nonorthogonal orbital based n-body reduced density matrices and their applications to valence bond theory. III. Second-order perturbation theory using valence bond self-consistent field function as reference. , 2014, The Journal of chemical physics.

[20]  Sandeep Sharma,et al.  The density matrix renormalization group in quantum chemistry. , 2011, Annual review of physical chemistry.

[21]  Debashree Ghosh,et al.  An Introduction to the Density Matrix Renormalization Group Ansatz in Quantum Chemistry , 2007, 0711.1398.

[22]  S. White,et al.  Measuring orbital interaction using quantum information theory , 2005, cond-mat/0508524.

[23]  Qiming Sun,et al.  Automated Construction of Molecular Active Spaces from Atomic Valence Orbitals. , 2017, Journal of chemical theory and computation.

[24]  M. Reiher,et al.  Measuring multi-configurational character by orbital entanglement , 2016, 1609.02617.

[25]  J. Sólyom,et al.  Optimizing the density-matrix renormalization group method using quantum information entropy , 2003 .

[26]  Markus Reiher,et al.  New Approaches for ab initio Calculations of Molecules with Strong Electron Correlation. , 2015, Chimia.

[27]  J. Sólyom,et al.  Applications of Quantum Information in the Density-Matrix Renormalization Group , 2008 .

[28]  Ali Alavi,et al.  Fermion Monte Carlo without fixed nodes: a game of life, death, and annihilation in Slater determinant space. , 2009, The Journal of chemical physics.

[29]  Markus Reiher,et al.  The Delicate Balance of Static and Dynamic Electron Correlation. , 2016, Journal of chemical theory and computation.

[30]  Felipe Zapata,et al.  Molcas 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table , 2016, J. Comput. Chem..

[31]  S. Sakai Theoretical Analysis of Concerted and Stepwise Mechanisms of Diels−Alder Reaction between Butadiene and Ethylene , 2000 .

[32]  Markus Reiher,et al.  The Density Matrix Renormalization Group Algorithm in Quantum Chemistry , 2010 .

[33]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[34]  B. Roos,et al.  A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach , 1980 .

[35]  Ernest R. Davidson,et al.  The Importance of Including Dynamic Electron Correlation in ab initio Calculations , 1996 .

[36]  Peter Pulay,et al.  The unrestricted natural orbital–complete active space (UNO–CAS) method: An inexpensive alternative to the complete active space–self‐consistent‐field (CAS–SCF) method , 1989 .

[37]  White,et al.  Density-matrix algorithms for quantum renormalization groups. , 1993, Physical review. B, Condensed matter.

[38]  Melvin B. Robin,et al.  Higher excited states of polyatomic molecules , 1974 .

[39]  M. Reiher,et al.  Entanglement Measures for Single- and Multireference Correlation Effects. , 2012, The journal of physical chemistry letters.

[40]  Garnet Kin-Lic Chan,et al.  Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms. , 2016, The Journal of chemical physics.

[41]  Markus Reiher,et al.  Orbital Entanglement in Bond-Formation Processes. , 2013, Journal of chemical theory and computation.

[42]  Laura Gagliardi,et al.  The restricted active space followed by second-order perturbation theory method: theory and application to the study of CuO2 and Cu2O2 systems. , 2008, The Journal of chemical physics.

[43]  K. Houk,et al.  Diels-Alder dimerization of 1,3-butadiene: an ab initio CASSCF study of the concerted and stepwise mechanisms and butadiene-ethylene revisited , 1993 .

[44]  Seifert,et al.  Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon. , 1995, Physical review. B, Condensed matter.

[45]  S. Peyerimhoff,et al.  A Series of Electronic Spectral Calculations Using Nonempirical CL Techniques , 1975 .

[46]  B. Ruscic,et al.  W4 theory for computational thermochemistry: In pursuit of confident sub-kJ/mol predictions. , 2006, The Journal of chemical physics.

[47]  Michael W. Schmidt,et al.  Are atoms intrinsic to molecular electronic wavefunctions? I. The FORS model , 1982 .

[48]  B. Roos The Complete Active Space Self‐Consistent Field Method and its Applications in Electronic Structure Calculations , 2007 .

[49]  Markus Reiher,et al.  New electron correlation theories for transition metal chemistry. , 2011, Physical chemistry chemical physics : PCCP.

[50]  Michael W. Schmidt,et al.  Are atoms sic to molecular electronic wavefunctions? II. Analysis of fors orbitals , 1982 .

[51]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[52]  R. J. Cave AB INITIO METHODS FOR THE DESCRIPTION OF ELECTRONICALLY EXCITED STATES: SURVEY OF METHODS AND SELECTED RESULTS , 1997 .

[53]  G. Seifert,et al.  Calculations of molecules, clusters, and solids with a simplified LCAO-DFT-LDA scheme , 1996 .

[54]  Markus Reiher,et al.  Automated Selection of Active Orbital Spaces. , 2016, Journal of chemical theory and computation.

[55]  Peter Pulay,et al.  UHF natural orbitals for defining and starting MC‐SCF calculations , 1988 .

[56]  B. Roos,et al.  Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions , 1990 .

[57]  P. Knowles,et al.  A second order multiconfiguration SCF procedure with optimum convergence , 1985 .

[58]  Katharina Boguslawski,et al.  Orbital entanglement in quantum chemistry , 2014, 1409.8017.

[59]  E. Davidson,et al.  A systematic approach to vertically excited states of ethylene using configuration interaction and coupled cluster techniques. , 2014, The Journal of chemical physics.

[60]  O. Goscinski,et al.  Quantum science: methods and structure , 1976 .