Impedance model of metal-dielectric nanocomposites produced by ion-beam sputtering in vacuum conditions and its experimental verification for thin films of (FeCoZr)x(PZT)(100−x)

Abstract The paper presents results of testing electric properties (resistance, capacity and phase angle in an equivalent parallel circuit) of ferromagnetic alloy-dielectric nanocomposites (FeCoZr)x(PZT)(100−x) produced by ion-beam sputtering in vacuum conditions. The measurements have been performed using alternating current within the frequency range of 50 Hz–1 MHz for measuring temperatures ranging from 77 K to 373 K. In nanocomposites (CoFeZr)x(PZT)(100−x), produced by ion beam sputtering using a beam of combined argon and oxygen ions, for x approaching the percolation threshold, frequency dependences of the phase angle φ that resemble those occurring in RLC parallel circuits have been observed. In the low frequency area, the phase angle of 90° ≤ φ

[1]  A. K. Jonscher,et al.  Electronic processes in non-crystalline materials: By N. F. Mott and E. A. Davis, Clarendon Press: Oxford Univ. Press, Oxford, 1971; 437 pp. Price: £7.50 , 1972 .

[2]  F. Komarov,et al.  Effects of surfactant and fabrication procedure on the electrical conductivity and electromagnetic shielding of single‐walled carbon nanotube films , 2015 .

[3]  A. Pogrebnjak,et al.  Structure and properties of Al2O3 and Al2O3+Cr2O3 coatings deposited to steel 3 (0.3 wt%C) substrate using pulsed detonation technology , 2001 .

[4]  S. Havriliak,et al.  Dielectric and Mechanical Relaxation in Materials: Analysis, Interpretation and Application to Polymers , 1996 .

[5]  A. Fedotov,et al.  Negative capacitance in (FeCoZr)–(PZT) nanocomposite films , 2013 .

[6]  A. Fedotov,et al.  AC/DC conductance in granular nanocomposite films (Fe45Co45Zr10)x(CaF2)100−x , 2014 .

[7]  S. Gubin,et al.  Magnetic Nanoparticles Preparation, Structure and Properties , 2006 .

[8]  A. K. Fedotov,et al.  Hopping of electron transport in granular Cux(SiO2)1–x nanocomposite films deposited by ion-beam sputtering , 2014 .

[9]  Vitalii Bondariev,et al.  Enhancement of negative capacitance effect in (CoFeZr)x(CaF2)(100−x) nanocomposite films deposited by ion beam sputtering in argon and oxygen atmosphere , 2014 .

[10]  Tomasz N. Koltunowicz,et al.  Inductive type properties of FeCoZr–CaF2 and FeCoZr–PZT nanocomposites , 2015, Journal of Materials Science: Materials in Electronics.

[11]  A. Rodzik,et al.  Dielectric constant and ac conductivity of semi-insulating Cd[sub 1−x]Mn[sub x]Te semiconductors , 1997 .

[12]  A. Patryn,et al.  Influence of matrix type on negative capacitance effect in nanogranular composite films FeCoZr-insulator , 2013 .

[13]  M. Dokukin,et al.  Planar Hall effect and anisotropic magnetoresistance in layered structures Co0.45Fe0.45Zr0.1/a-Si with percolation conduction , 2006 .

[14]  Vitalii Bondariev,et al.  Annealing of (CoFeZr)x(CaF2)100-xNanocomposites Produced by the Ion-Beam Sputtering in the Ar and O2Ambient , 2013 .

[15]  P. Zhukowski,et al.  Hopping Conductance in Nanocomposites (Fe_{0.45}Co_{0.45}Zr_{0.10})_{x}(Al_2O_3)_{1 - x} Manufactured by Ion-Beam Sputtering of Complex Target in Ar+O_2 Ambient Gas , 2011 .

[16]  A. Pogrebnjak,et al.  Structure and properties of nanostructured (Ti-Hf-Zr-V-Nb)N coatings , 2013 .

[17]  Michael Tinkham,et al.  Introduction to mesoscopic physics , 1997 .

[18]  A. B. Pakhomov,et al.  Resistivity and Hall resistivity in percolating (NiFe)-SiO2 films , 1996 .

[19]  M. Marszałek,et al.  Effect of oxygen pressure on phase composition and magnetic structure of FeCoZr-Pb(ZrTi)O3 nanocomposites , 2012 .

[20]  O. Boiko,et al.  AC Hopping Conductance in Nanocomposite Films with Ferromagnetic Alloy Nanoparticles in a PbZrTiO3 Matrix , 2015, Journal of Electronic Materials.

[21]  T. Kołtunowicz,et al.  Hopping conductivity of metal-dielectric nanocomposites produced by means of magnetron sputtering with the application of oxygen and argon ions , 2009 .

[22]  Michael E. McHenry,et al.  Amorphous and nanocrystalline materials for applications as soft magnets , 1999 .

[23]  A. K. Fedotov,et al.  Influence of sputtering atmosphere on hopping conductance in granular nanocomposite (FeCoZr)x(Al2O3)1−x films , 2014 .

[24]  A. K. Fedotov,et al.  The Features of Real Part of Admittance in the Nanocomposites (Fe_{45}Co_{45}Zr_{10})_{x}(Al_2O_3)_{100 - x} Manufactured by the Ion-Beam Sputtering Technique with Ar Ions , 2011 .

[25]  A. Fedotov,et al.  Temperature and frequency dependences of real part of impedance in the FeCoZr-doped PZT nanogranular composites , 2012 .

[26]  M. A. Sedova,et al.  Anomalous Hall effect in granular Fe/SiO2 films in the tunneling-conduction regime , 1999 .

[27]  Sheng Chen,et al.  A clustering technique for digital communications channel equalization using radial basis function networks , 1993, IEEE Trans. Neural Networks.

[28]  E. Pavlidou,et al.  Investigation of the characteristics and corrosion resistance of Al2O3/TiN coatings , 2006 .

[29]  F. K. Becker,et al.  Automatic equalization for digital communication , 1965 .

[30]  Fadei F. Komarov,et al.  Dielectric properties and model of hopping conductivity of GaAs irradiated by H+ ions , 2007 .

[31]  P. Węgierek,et al.  Formation of Noncoil-Like Inductance in Nanocomposites (Fe0.45Co0.45Zr0.10)x(Al2O3)1-xManufactured by Ion-Beam Sputtering of Complex Targets in Ar+O2Atmosphere , 2011 .