Constructing the Virasoro Groups Using Differential Cohomology

The Virasoro groups are a family of central extensions of Diff(S), the group of orientation-preserving diffeomorphisms of S, by the circle group T. We give a novel, geometric construction of these central extensions using “off-diagonal” differential lifts of the first Pontryagin class, thus affirmatively answering a question of Freed-Hopkins.

[1]  I. Gel'fand,et al.  The cohomologies of the lie algebra of the vector fields in a circle , 1968 .

[2]  R. Bott On the Chern-Weil homomorphism and the continuous cohomology of Lie-groups , 1973 .

[3]  Differentiable Cohomology of Gauge Groups , 2000, math/0011069.

[4]  T. Schick,et al.  A geometric description of differential cohomology , 2010 .

[5]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[6]  Urs Schreiber,et al.  Differential cohomology in a cohesive infinity-topos , 2013, 1310.7930.

[7]  Charles C. Moore Group extensions and cohomology for locally compact groups , 1976 .

[8]  R. Bott,et al.  On the de Rham theory of certain classifying spaces , 1976 .

[9]  B. Sury,et al.  Blaise pascal , 2004 .

[10]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[11]  C. Rajan,et al.  On cohomology theory for topological groups , 2010, 1009.4519.

[12]  Notices , 1925, Neuropeptides.

[13]  A. A. Beilinson,et al.  Higher regulators and values of L-functions , 1985 .

[14]  M. Flach Cohomology of topological groups with applications to the Weil group , 2008, Compositio Mathematica.

[15]  Jean-Luc Brylinski,et al.  Loop Spaces, Characteristic Classes and Geometric Quantization , 1994 .

[16]  JUN HOU FUNG,et al.  Cohomology on Lie Groups , 2020 .

[17]  Regulators and characteristic classes of flat bundles , 1992, alg-geom/9202023.

[18]  E. Thomas The torsion Pontryagin classes , 1962 .

[19]  H. Cartan Cohomologie réelle d'un espace fibré principal différentiable. I : notions d'algèbre différentielle, algèbre de Weil d'un groupe de Lie , 1950 .

[20]  J. Brylinski Comparison of the Beilinson-Chern Classes With the Chern-Cheeger-Simons Classes , 1999 .

[21]  S. Ana,et al.  Topology , 2018, International Journal of Mathematics Trends and Technology.

[22]  G. Segal Unitary representations of some infinite dimensional groups , 1981 .

[23]  B. Oblak BMS Particles in Three Dimensions , 2016, 1610.08526.

[24]  L. Lempert The Virasoro group as a complex manifold , 1995 .

[25]  Christoph Wockel,et al.  A cocycle model for topological and Lie group cohomology , 2011, 1110.3304.

[26]  B. M. Fulk MATH , 1992 .

[27]  R. Block On the Mills-Seligman axioms for Lie algebras of classical type , 1966 .

[28]  A. Weil Géométrie différentielle des espaces fibrés , 1979 .

[29]  James Simons,et al.  Differential characters and geometric invariants , 1985 .

[30]  Martin Palmer,et al.  Homological stability for moduli spaces of disconnected submanifolds, I , 2018, Algebraic & Geometric Topology.

[31]  R. Lathe Phd by thesis , 1988, Nature.

[32]  I. M. Singer,et al.  Quadratic functions in geometry, topology, and M-theory , 2002, math/0211216.

[33]  Arun Debray,et al.  Differential Cohomology: Categories, Characteristic Classes, and Connections , 2021, 2109.12250.

[34]  D. Freed,et al.  Chern-Weil forms and abstract homotopy theory , 2013, 1301.5959.

[35]  D. Wigner Algebraic cohomology of topological groups , 1970 .

[36]  K. Waldorf Multiplicative bundle gerbes with connection , 2008, 0804.4835.

[37]  H. O. Erdin Characteristic Classes , 2004 .

[38]  Christoph Wockel,et al.  Topological Group Cohomology with Loop Contractible Coefficients , 2011, 1110.2977.

[39]  M. Murray,et al.  Bundle Gerbes: Stable Isomorphism and Local Theory , 1999, math/9908135.

[40]  J. Brylinski,et al.  The geometry of degree-four characteristic classes and of line bundles on loop spaces I , 1994 .

[41]  R. Brower,et al.  Eliminating spurious states from the dual resonance model , 1971 .

[42]  S. Chern Differential Geometry of Fiber Bundles , 1989 .

[43]  Yuji Terashima,et al.  A fiber integration formula for the smooth Deligne cohomology , 2000 .

[44]  V. G. Knizhnik,et al.  Current Algebra and Wess-Zumino Model in Two-Dimensions , 1984 .

[45]  Hadi Salmasian,et al.  Classification of positive energy representations of the Virasoro group , 2014, 1402.6572.

[46]  J. Dupont,et al.  Integration of simplicial forms and Deligne cohomology , 2004, math/0402059.

[47]  友紀子 中川 SoC , 2021, Journal of Japan Society for Fuzzy Theory and Intelligent Informatics.

[48]  U. Bunke,et al.  Differential cohomology theories as sheaves of spectra , 2013, 1311.3188.

[49]  J. Brylinski Geometric Construction of Quillen Line Bundles , 1999 .

[50]  J. Stasheff Continuous cohomology of groups and classifying spaces , 1978 .