Spatially resolved measurements of H2O, HCl, CO, OCS, SO2, cloud opacity, and acid concentration in the Venus near‐infrared spectral windows

We observed Venus with the Apache Point Observatory 3.5 m telescope TripleSpec spectrograph (R = 3500, λ = 0.96–2.47 µm) on 1–3 March 2009 and on 25, 27, and 30 November and 2–4 December 2010. With these observations and synthetic spectra generated with the Spectral Mapping and Atmospheric Radiative Transfer model, we produce the first simultaneous maps of cloud opacity, acid concentration, water vapor (H2O), hydrogen chloride (HCl), carbon dioxide (CO), carbonyl sulfide (OCS), and sulfur dioxide (SO2) abundances in the Venusian lower atmosphere. Water measured at wavelengths near 1.18 µm (near-surface) averages 29 ± 2ppm (2009) and 27 ± 2 ppm (2010) and measured near 1.74 µm (15–30 km) averages 33 ± 2 ppm (2009) and 32 ± 2 ppm (2010). Water in both these altitude ranges is spatially homogeneous. Water measured near 2.4 µm (30–45 km) averages 34 ± 2 ppm (2009) and 33 ± 3 ppm (2010) and is spatially inhomogeneous and variable. HCl is measured near 1.74 µm to be 0.41 ± 0.04 ppm (2009) and 0.42 ± 0.05 ppm (2010). CO and OCS (2.3–2.5 µm; 30–45 km in altitude) are spatially inhomogeneous and show anticorrelation. CO (35 km) averages 25 ± 3 ppm (2009) and 22 ± 2 ppm (2010). OCS (36 km) averages 0.44 ± 0.10 ppm (2009) and 0.57 ± 0.12 ppm (2010). SO2 measurements average 140 ± 37 ppm (2009) and 126 ± 32 ppm (2010). Many species display a hemispherical dichotomy in their distribution. We find considerable spatial variability suggesting active processes with conservation between species. The most variable regions are just below the Venus cloud deck, and these may be related to changes in atmospheric circulation or virga events.

[1]  A comparison of water vapor line parameters for modeling the Venus deep atmosphere , 2009, 0901.3869.

[2]  T. Ackerman,et al.  Response of Earth's atmosphere to increases in solar flux and implications for loss of water from Venus. , 1984, Icarus.

[3]  David Crisp,et al.  Near-infrared light from Venus' nightside - A spectroscopic analysis , 1993 .

[4]  V. Krasnopolsky Spatially-resolved high-resolution spectroscopy of Venus 1. Variations of CO2, CO, HF, and HCl at the cloud tops , 2010 .

[5]  M. McElroy,et al.  Escape of Hydrogen from Venus , 1982, Science.

[6]  V. Krasnopolsky Spatially-resolved high-resolution spectroscopy of Venus 2. Variations of HDO, OCS, and SO2 at the cloud tops , 2010 .

[7]  D. Hunten,et al.  The microphysics of the clouds of Venus: Results of the Pioneer Venus Particle Size Spectrometer Experiment , 1980 .

[8]  R. Tolchenov,et al.  A high accuracy computed line list for the HDO molecule , 2010 .

[9]  Giuseppe Piccioni,et al.  Water vapor abundance near the surface of Venus from Venus Express/VIRTIS observations , 2009 .

[10]  D. Allen,et al.  The dark side of Venus , 1987 .

[11]  Seiji Sugita,et al.  On observing the compositional variability of the surface of Venus using nightside near‐infrared thermal radiation , 2003 .

[12]  P. Drossart,et al.  Variability of CO concentrations in the Venus troposphere from Venus Express/VIRTIS using a Band Ratio Technique , 2009 .

[13]  G. Piccioni,et al.  Carbon dioxide absorption at high densities in the 1.18μm nightside transparency window of Venus , 2014 .

[14]  Andrew P. Ingersoll,et al.  Vega balloon meteorological measurements , 1990 .

[16]  J. Kasting,et al.  Loss of Water from Venus. I. Hydrodynamic Escape of Hydrogen , 1983 .

[17]  D. Hunten,et al.  Nonthermal escape of hydrogen and deuterium from Venus and implications for loss of water , 1982 .

[18]  S. Okumura,et al.  Hemispheric distributions of HCl above and below the Venus’ clouds by ground-based 1.7 μm spectroscopy , 2008 .

[19]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[20]  John T. Rayner,et al.  Spextool: A Spectral Extraction Package for SpeX, a 0.8–5.5 Micron Cross‐Dispersed Spectrograph , 2004 .

[21]  B. Ragent,et al.  Large, solid particles in the clouds of Venus - Do they exist? , 1984 .

[22]  P. Drossart,et al.  Models of the global cloud structure on Venus derived from Venus Express observations , 2012 .

[23]  P. Drossart,et al.  Correlations between cloud thickness and sub‐cloud water abundance on Venus , 2010 .

[24]  Franck Montmessin,et al.  Variations of sulphur dioxide at the cloud top of Venus’s dynamic atmosphere , 2012, Nature Geoscience.

[25]  JOHN S. Lewis,et al.  Cometary Water on Venus: Implications of stochastic impacts , 1988 .

[26]  A. Basilevsky,et al.  Search for ongoing volcanic activity on Venus: Case study of Maat Mons, Sapas Mons and Ozza Mons volcanoes , 2012 .

[27]  M. Tomasko,et al.  The absorption of solar energy and the heating rate in the atmosphere of Venus , 1985 .

[28]  V. Krasnopolsky,et al.  A photochemical model for the Venus atmosphere at 47–112 km , 2011 .

[29]  Ryan C. Terrien,et al.  HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: NEW ESTIMATES , 2013, 1301.6674.

[30]  A. Ingersoll The Runaway Greenhouse: A History of Water on Venus , 1969 .

[31]  David Crisp,et al.  The deep atmosphere of Venus revealed by high-resolution nightside spectra , 1990, Nature.

[32]  Takeshi Imamura,et al.  Long‐term variation in the cloud‐tracked zonal velocities at the cloud top of Venus deduced from Venus Express VMC images , 2013 .

[33]  V. Krasnopolsky,et al.  Chemical kinetic model for the lower atmosphere of Venus , 2007 .

[34]  Ground-based near-infrared observations of water vapour in the Venus troposphere , 2012, 1212.1009.

[35]  J. Kasting,et al.  Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. , 1988, Icarus.

[36]  Gabriele Arnold,et al.  Radiative transfer in the atmosphere of Venus and application to surface emissivity retrieval from VIRTIS/VEX measurements , 2010 .

[37]  W. Vacca,et al.  Nonlinearity Corrections and Statistical Uncertainties Associated with Near‐Infrared Arrays , 2004, astro-ph/0401379.

[38]  David Crisp,et al.  Absorption of sunlight by water vapor in cloudy conditions: A partial explanation for the cloud absorption anomaly , 1997 .

[39]  M. Tomasko,et al.  Distribution and source of the UV absorption in Venus' atmosphere , 1980 .

[40]  D. Crisp,et al.  Bimodal distribution of sulfuric acid aerosols in the upper haze of Venus , 2013, 1312.3750.

[41]  D. Crisp,et al.  Ground‐based near‐infrared observations of the Venus nightside: The thermal structure and water abundance near the surface , 1996 .

[42]  B. Bézard,et al.  Measurements of pure CO2 absorption at high densities near 2.3 μm , 1991 .

[43]  R. Le Doucen,et al.  Measurements and empirical modeling of pure CO(2) absorption in the 2.3-νm region at room temperature: far wings, allowed and collision-induced bands. , 1996, Applied optics.

[44]  A. T. Young The Clouds of Venus , 1975 .

[45]  Giuseppe Piccioni,et al.  A latitudinal survey of CO, OCS, H2O, and SO2 in the lower atmosphere of Venus: Spectroscopic studies using VIRTIS‐H , 2008 .

[46]  T. Greathouse,et al.  Seasonal variations of temperature, acetylene and ethane in Saturn's atmosphere from 2005 to 2010, as observed by Cassini-CIRS , 2013 .

[47]  Franklin P. Mills,et al.  Sulfur chemistry in the Venus mesosphere from SO2 and SO microwave spectra , 2010 .

[48]  R. Hodges,et al.  Past and present water budget of Venus , 1992 .

[49]  Giuseppe Piccioni,et al.  Variable winds on Venus mapped in three dimensions , 2008 .

[50]  Y. Abe,et al.  Emergence of two types of terrestrial planet on solidification of magma ocean , 2013, Nature.

[51]  Anna Fedorova,et al.  The 1.10- and 1.18-μm nightside windows of Venus observed by SPICAV-IR aboard Venus Express , 2011 .

[52]  Mirel Birlan,et al.  Remote sensing of Venus’ lower atmosphere from ground-based IR spectroscopy: Latitudinal and vertical distribution of minor species , 2006 .

[53]  Charles C. Counselman,et al.  Zonal and meridional circulation of the lower atmosphere of Venus determined by radio interferometry , 1980 .

[54]  Angioletta Coradini,et al.  Scientific goals for the observation of Venus by VIRTIS on ESA/Venus Express mission , 2007 .

[55]  A. Watson,et al.  The runaway greenhouse: implications for future climate change, geoengineering and planetary atmospheres , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[56]  Giuseppe Piccioni,et al.  Tropospheric carbon monoxide concentrations and variability on Venus from Venus Express/VIRTIS-M observations , 2008 .

[57]  J. Tennyson,et al.  A high-accuracy computed water line list , 2006, astro-ph/0601236.

[58]  J. Pollack,et al.  The dark side of Venus: near-infrared images and spectra from the Anglo-Australian observatory. , 1991, Science.

[59]  Kevin H. Baines,et al.  Latitudinal distribution of carbon monoxide in the deep atmosphere of Venus , 1993 .

[60]  H Germany,et al.  A Method of Correcting Near‐Infrared Spectra for Telluric Absorption , 2002, astro-ph/0211255.

[61]  Drake Deming,et al.  Earth as an extrasolar planet: Earth model validation using EPOXI earth observations. , 2011, Astrobiology.

[62]  Franklin P. Mills,et al.  Sulfur chemistry in the middle atmosphere of Venus , 2012 .

[63]  T. Encrenaz,et al.  Latitudinal variations of CO and OCS in the lower atmosphere of Venus from near-infrared nightside spectro-imaging , 2005 .

[64]  K. Zahnle,et al.  Low simulated radiation limit for runaway greenhouse climates , 2013 .

[65]  David Crisp,et al.  Water in the deep atmosphere of Venus from high-resolution spectra of the night side , 1995 .

[66]  Jonathan Tennyson,et al.  HITEMP, the high-temperature molecular spectroscopic database , 2010 .

[67]  D. W. Strecker,et al.  Properties of the clouds of Venus, as inferred from airborne observations of its near-infrared reflectivity spectrum , 1978 .

[68]  T V Johnson,et al.  Galileo Infrared Imaging Spectroscopy Measurements at Venus , 1991, Science.

[69]  K. F. Palmer,et al.  Optical constants of sulfuric Acid; application to the clouds of venus? , 1975, Applied optics.

[70]  G. Sill Sulfuric acid in the Venus clouds. , 1972 .

[71]  Yuk L. Yung,et al.  Evidence for carbonyl sulfide (OCS) conversion to CO in the lower atmosphere of Venus , 2009 .

[72]  P. Drossart,et al.  Cloud structure in Venus middle‐to‐lower atmosphere as inferred from VEX/VIRTIS 1.74 μm data , 2009 .

[73]  T. Encrenaz,et al.  Probing Venus's cloud structure with Galileo NIMS , 1993 .

[74]  J. Crawford,et al.  Cloud structure on the dark side of Venus , 1984, Nature.

[75]  David Crisp,et al.  THE ABUNDANCE OF SULFUR DIOXIDE BELOW THE CLOUDS OF VENUS , 1993 .

[76]  Richard Moissl,et al.  Cloud level winds from the Venus Express Monitoring Camera imaging , 2013 .

[77]  David Harry Grinspoon,et al.  Implications of the high D/H ratio for the sources of water in Venus' atmosphere , 1993, Nature.

[78]  Fredric W. Taylor,et al.  A correlated-k model of radiative transfer in the near-infrared windows of Venus , 2008 .

[79]  Y. Yung,et al.  Photochemistry of the stratosphere of Venus: Implications for atmospheric evolution☆☆☆ , 1982 .

[80]  James Howard,et al.  Mass producing an efficient NIR spectrograph , 2004, SPIE Astronomical Telescopes + Instrumentation.

[81]  J. Bell,et al.  Spectroscopic Observations of Bright and Dark Emission Features on the Night Side of Venus , 1991, Science.

[82]  D. Crisp Radiative forcing of the Venus mesosphere: I. Solar fluxes and heating rates , 1986 .

[83]  Henry E. Revercomb,et al.  Models of the structure of the atmosphere of Venus from the surface to 100 kilometers altitude , 1985 .