Tutorial: guidelines for the computational analysis of single-cell RNA sequencing data

[1]  Matthew Stephens,et al.  Separating measurement and expression models clarifies confusion in single-cell RNA sequencing analysis , 2020, Nature Genetics.

[2]  R. Sandberg,et al.  Single-cell RNA counting at allele and isoform resolution using Smart-seq3 , 2019, Nature Biotechnology.

[3]  Wenhao Tang,et al.  bayNorm: Bayesian gene expression recovery, imputation and normalization for single-cell RNA-sequencing data , 2019, Bioinform..

[4]  George C. Linderman,et al.  UMAP does not preserve global structure any better than t-SNE when using the same initialization , 2019, bioRxiv.

[5]  S. Sprecher,et al.  Single cell transcriptome atlas of the Drosophila larval brain , 2019, eLife.

[6]  Jason D. Buenrostro,et al.  Inference and effects of barcode multiplets in droplet-based single-cell assays , 2019, Nature Communications.

[7]  Fabian J Theis,et al.  Generalizing RNA velocity to transient cell states through dynamical modeling , 2019, Nature Biotechnology.

[8]  Pak Chung Sham,et al.  Evaluation of tools for highly variable gene discovery from single-cell RNA-seq data , 2019, Briefings Bioinform..

[9]  Fabian J Theis,et al.  Current best practices in single‐cell RNA‐seq analysis: a tutorial , 2019, Molecular systems biology.

[10]  Marcel J. T. Reinders,et al.  A comparison of automatic cell identification methods for single-cell RNA sequencing data , 2019, Genome Biology.

[11]  Xiang Zhou,et al.  Accuracy, robustness and scalability of dimensionality reduction methods for single-cell RNA-seq analysis , 2019, Genome Biology.

[12]  Yvan Saeys,et al.  A comparison of single-cell trajectory inference methods , 2019, Nature Biotechnology.

[13]  Allon M Klein,et al.  Scrublet: Computational Identification of Cell Doublets in Single-Cell Transcriptomic Data. , 2019, Cell systems.

[14]  Raphael Gottardo,et al.  Orchestrating single-cell analysis with Bioconductor , 2019, Nature Methods.

[15]  Samantha Riesenfeld,et al.  EmptyDrops: distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data , 2019, Genome Biology.

[16]  Beate Vieth,et al.  A systematic evaluation of single cell RNA-seq analysis pipelines , 2019, Nature Communications.

[17]  Valentine Svensson,et al.  Droplet scRNA-seq is not zero-inflated , 2019, Nature Biotechnology.

[18]  Fabian J Theis,et al.  PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells , 2019, Genome biology.

[19]  R. Satija,et al.  Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression , 2019, Genome Biology.

[20]  Dennis Kostka,et al.  scds: Computational Annotation of Doublets in Single Cell RNA Sequencing Data , 2019, bioRxiv.

[21]  Evan Z. Macosko,et al.  Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution , 2019, Science.

[22]  Benjamin J. Raphael,et al.  netNMF-sc: leveraging gene–gene interactions for imputation and dimensionality reduction in single-cell expression analysis , 2019, bioRxiv.

[23]  Cole Trapnell,et al.  Supervised classification enables rapid annotation of cell atlases , 2019, Nature Methods.

[24]  R. Satija,et al.  Integrative single-cell analysis , 2019, Nature Reviews Genetics.

[25]  Andrew J. Hill,et al.  The single cell transcriptional landscape of mammalian organogenesis , 2019, Nature.

[26]  M. Hemberg,et al.  Challenges in unsupervised clustering of single-cell RNA-seq data , 2019, Nature Reviews Genetics.

[27]  Martin Hemberg,et al.  M3Drop: dropout-based feature selection for scRNASeq , 2018, Bioinform..

[28]  David Tse,et al.  Valid Post-clustering Differential Analysis for Single-Cell RNA-Seq. , 2018, Cell systems.

[29]  Jingshu Wang,et al.  Data denoising with transfer learning in single-cell transcriptomics , 2019, Nature Methods.

[30]  Aviezer Lifshitz,et al.  MetaCell: analysis of single cell RNA-seq data using k-NN graph partitions , 2018, bioRxiv.

[31]  Christoph Hafemeister,et al.  Comprehensive integration of single cell data , 2018, bioRxiv.

[32]  M. Hemberg,et al.  False signals induced by single-cell imputation , 2018, F1000Research.

[33]  Michael I. Jordan,et al.  Deep Generative Modeling for Single-cell Transcriptomics , 2018, Nature Methods.

[34]  James T. Webber,et al.  Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris , 2018, Nature.

[35]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection , 2018, J. Open Source Softw..

[36]  Luyi Tian,et al.  Comparison of clustering tools in R for medium-sized 10x Genomics single-cell RNA-sequencing data , 2018, F1000Research.

[37]  Charlotte Soneson,et al.  A systematic performance evaluation of clustering methods for single-cell RNA-seq data , 2018, F1000Research.

[38]  Erik Sundström,et al.  RNA velocity of single cells , 2018, Nature.

[39]  Kevin R. Moon,et al.  Recovering Gene Interactions from Single-Cell Data Using Data Diffusion , 2018, Cell.

[40]  Zev J. Gartner,et al.  DoubletFinder: Doublet detection in single-cell RNA sequencing data using artificial nearest neighbors , 2018, bioRxiv.

[41]  Nancy R. Zhang,et al.  SAVER: Gene expression recovery for single-cell RNA sequencing , 2018, Nature Methods.

[42]  Jiacheng Yao,et al.  Comparative analysis of droplet-based ultra-high-throughput single-cell RNA-seq systems , 2018, bioRxiv.

[43]  M. Hemberg,et al.  scmap: projection of single-cell RNA-seq data across data sets , 2018, Nature Methods.

[44]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[45]  Laleh Haghverdi,et al.  Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors , 2018, Nature Biotechnology.

[46]  Wei Vivian Li,et al.  An accurate and robust imputation method scImpute for single-cell RNA-seq data , 2018, Nature Communications.

[47]  Luke Zappia,et al.  Clustering trees: a visualization for evaluating clusterings at multiple resolutions , 2018, bioRxiv.

[48]  Z. J. Huang,et al.  Characterizing the replicability of cell types defined by single cell RNA-sequencing data using MetaNeighbor , 2018, Nature Communications.

[49]  Charlotte Soneson,et al.  Observation weights unlock bulk RNA-seq tools for zero inflation and single-cell applications , 2018, Genome Biology.

[50]  Charlotte Soneson,et al.  Bias, robustness and scalability in single-cell differential expression analysis , 2018, Nature Methods.

[51]  S. Orkin,et al.  Mapping the Mouse Cell Atlas by Microwell-Seq , 2018, Cell.

[52]  K. Kirschner,et al.  Experimental design for single-cell RNA sequencing , 2017, Briefings in functional genomics.

[53]  Fabian J Theis,et al.  SCANPY: large-scale single-cell gene expression data analysis , 2018, Genome Biology.

[54]  Il-Youp Kwak,et al.  DrImpute: imputing dropout events in single cell RNA sequencing data , 2017, bioRxiv.

[55]  Fabian J Theis,et al.  The Human Cell Atlas , 2017, bioRxiv.

[56]  Russell B. Fletcher,et al.  Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics , 2017, bioRxiv.

[57]  M. Newton,et al.  SCnorm: robust normalization of single-cell RNA-seq data , 2017, Nature Methods.

[58]  Berthold Göttgens,et al.  Assessing the reliability of spike-in normalization for analyses of single-cell RNA sequencing data , 2017, bioRxiv.

[59]  I. Hellmann,et al.  Comparative Analysis of Single-Cell RNA Sequencing Methods , 2016, bioRxiv.

[60]  C. Ponting,et al.  Single-Cell Multiomics: Multiple Measurements from Single Cells , 2017, Trends in genetics : TIG.

[61]  Valentine Svensson,et al.  Power Analysis of Single Cell RNA-Sequencing Experiments , 2016, Nature Methods.

[62]  M. Schaub,et al.  SC3 - consensus clustering of single-cell RNA-Seq data , 2016, Nature Methods.

[63]  Grace X. Y. Zheng,et al.  Massively parallel digital transcriptional profiling of single cells , 2016, Nature Communications.

[64]  Y. Saeys,et al.  Computational methods for trajectory inference from single‐cell transcriptomics , 2016, European journal of immunology.

[65]  Aaron T. L. Lun,et al.  Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R , 2017, Bioinform..

[66]  Patrik L. Ståhl,et al.  Visualization and analysis of gene expression in tissue sections by spatial transcriptomics , 2016, Science.

[67]  Guocheng Yuan,et al.  GiniClust: detecting rare cell types from single-cell gene expression data with Gini index , 2016, Genome Biology.

[68]  F. Ginhoux,et al.  Mpath maps multi-branching single-cell trajectories revealing progenitor cell progression during development , 2016, Nature Communications.

[69]  Hongkai Ji,et al.  TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis , 2016, Nucleic acids research.

[70]  J. Marioni,et al.  Pooling across cells to normalize single-cell RNA sequencing data with many zero counts , 2016, Genome Biology.

[71]  Charles H. Yoon,et al.  Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq , 2016, Science.

[72]  Fabian J Theis,et al.  Diffusion pseudotime robustly reconstructs lineage branching , 2016, Nature Methods.

[73]  Aleksandra A. Kolodziejczyk,et al.  Classification of low quality cells from single-cell RNA-seq data , 2016, Genome Biology.

[74]  Sarah A Teichmann,et al.  Computational assignment of cell-cycle stage from single-cell transcriptome data. , 2015, Methods.

[75]  Sean C. Bendall,et al.  Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis , 2015, Cell.

[76]  P. Linsley,et al.  MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data , 2015, Genome Biology.

[77]  Evan Z. Macosko,et al.  Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets , 2015, Cell.

[78]  B. Barlogie,et al.  Removing batch effects from purified plasma cell gene expression microarrays with modified ComBat , 2015, BMC Bioinformatics.

[79]  A. Oudenaarden,et al.  Validation of noise models for single-cell transcriptomics , 2014, Nature Methods.

[80]  B. Williams,et al.  From single-cell to cell-pool transcriptomes: Stochasticity in gene expression and RNA splicing , 2014, Genome research.

[81]  N. Neff,et al.  Quantitative assessment of single-cell RNA-sequencing methods , 2013, Nature Methods.

[82]  Åsa K. Björklund,et al.  Smart-seq2 for sensitive full-length transcriptome profiling in single cells , 2013, Nature Methods.

[83]  Davis J. McCarthy,et al.  Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation , 2012, Nucleic acids research.

[84]  M. Robinson,et al.  A scaling normalization method for differential expression analysis of RNA-seq data , 2010, Genome Biology.

[85]  Catalin C. Barbacioru,et al.  mRNA-Seq whole-transcriptome analysis of a single cell , 2009, Nature Methods.

[86]  Jean-Loup Guillaume,et al.  Fast unfolding of communities in large networks , 2008, 0803.0476.

[87]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[88]  Donald A. Jackson,et al.  How many principal components? stopping rules for determining the number of non-trivial axes revisited , 2005, Comput. Stat. Data Anal..