Dielectric spectroscopy and conductivity of polyelectrolyte solutions

The dielectric and conductometric properties of aqueous polyelectrolyte solutions present a very complex phenomenology, not yet completely understood, differing from the properties of both neutral macromolecular solutions and of simple electrolytes. Three relaxations are evident in dielectric spectroscopy of aqueous polyelectrolyte solutions. Near 17 GHz, water molecules relax and hence this highest frequency relaxation gives information on the state of water in the solution. At lower frequencies in the MHz range, free counterions respond to the applied field and polarize on the scale of the correlation length. This intermediate frequency relaxation thus provides information about the effective charge on the polyelectrolyte chains, and the fraction of condensed counterions. However, the presence of polar side chains adds a further polarization mechanism that also contributes in this intermediate frequency range. At still lower frequencies, the condensed counterions polarize in a non-uniform way along the polyelectrolyte chain backbone and dielectric spectroscopy in the kHz range may determine the effective friction coefficient of condensed counterions. In this review, we analyse in detail the dielectric and conductometric behaviour of aqueous polyelectrolyte solutions in the light of recent scaling theories for polyelectrolyte conformation and summarize the state-of-the-art in this field.

[1]  G. S. Manning Limiting Laws and Counterion Condensation in Polyelectrolyte Solutions II. Self‐Diffusion of the Small Ions , 1969 .

[2]  B. Shklovskii WIGNER CRYSTAL MODEL OF COUNTERION INDUCED BUNDLE FORMATION OF RODLIKE POLYELECTROLYTES , 1998, cond-mat/9809429.

[3]  C. Cametti,et al.  Side-chain dynamics in poly(α-glutamate) and poly(γ-glutamate) aqueous solutions: a high-frequency dielectric investigation , 1999 .

[4]  D. D. Yue,et al.  Theory of Electric Polarization , 1974 .

[5]  H. Curtis,et al.  The Dielectric Properties of Water–Dielectric Interphases , 1937 .

[6]  Andrey V. Dobrynin,et al.  Cascade of Transitions of Polyelectrolytes in Poor Solvents , 1996 .

[7]  M. Mandel,et al.  Dielectric increment and dielectric dispersion of solutions containing simple charged linear macromolecules. I. Theory. , 1974, Biophysical chemistry.

[8]  M. Fixman Charged Macromolecules in External Fields. 2. Preliminary Remarks on the Cylinder , 1980 .

[9]  R. Varoqui,et al.  Relaxation and electrophoretic effects in polyelectrolyte solutions. II. Polyelectrolyteplus‐salt solutions , 1978 .

[10]  M. Mandel,et al.  Plane-parallel condenser with variable electrode spacing for determination of electric permittivity of highly conducting liquids below 1 MHz. Part 1.—Theoretical considerations , 1971 .

[11]  J. Barthel,et al.  The dielectric relaxation of water between 0°C and 35°C , 1999 .

[12]  G. S. Manning Limiting law for the conductance of the rod model of a salt-free polyelectrolyte solution , 1975 .

[13]  Jan K. G. Dhont,et al.  An introduction to dynamics of colloids , 1996 .

[14]  S. Takashima Effect of ions on the dielectric relaxation of DNA , 1967, Biopolymers.

[15]  Shiro Takashima,et al.  Electrical Properties of Biopolymers and Membranes , 1989 .

[16]  H. Eisenberg Conductance of partially neutralized polymethacrylic and polyacrylic acids, using a polarization compensated twin cell , 1958 .

[17]  T. Shaw The Elimination of Errors due to Electrode Polarization in Measurements of the Dielectric Constants of Electrolytes , 1942 .

[18]  C. Gabriel,et al.  Dielectric behavior of DNA solution at radio and microwave frequencies (at 20 degrees C). , 1984, Biophysical journal.

[19]  G. S. Manning Counterion condensation theory constructed from different models , 1996 .

[20]  V. Arkhipov Hierarchy of dielectric relaxation times in water , 2002 .

[21]  S. Dev,et al.  Further considerations of non symmetrical dielectric relaxation behaviour arising from a simple empirical decay function , 1971 .

[22]  M. Rubinstein,et al.  Counterion phase transitions in dilute polyelectrolyte solutions. , 2001, Physical review letters.

[23]  Colmenero,et al.  Interconnection between frequency-domain Havriliak-Negami and time-domain Kohlrausch-Williams-Watts relaxation functions. , 1993, Physical review. B, Condensed matter.

[24]  Y. Feldman,et al.  The symmetric broadening of the water relaxation peak in polymer-water mixtures and its relationship to the hydrophilic and hydrophobic properties of polymers , 2002 .

[25]  K. Ito,et al.  Crossover behavior in high-frequency dielectric relaxation of linear polyions in dilute and semidilute solutions , 1990 .

[26]  C. Cametti,et al.  Reduction of the contribution of electrode polarization effects in the radiowave dielectric measurements of highly conductive biological cell suspensions. , 2001, Bioelectrochemistry.

[27]  Mandel The dielectric increments of aqueous polyelectrolyte solutions: a scaling approach , 2000, Biophysical chemistry.

[28]  S Ridella,et al.  Study of bound water of poly-adenine using high frequency dielectric measurements. , 1986, Biophysical journal.

[29]  B. Jacobson On the Interpretation of Dielectric Constants of Aqueous Macromolecular Solutions. Hydration of Macromolecules , 1955 .

[30]  Yuri Feldman,et al.  Fractal-polarization correction in time domain dielectric spectroscopy , 1998 .

[31]  A. Dobrynin,et al.  Counterion Condensation and Phase Separation in Solutions of Hydrophobic Polyelectrolytes , 2001 .

[32]  M. Fixman,et al.  Electrical and convective polarization of the cylindrical macroions , 1981 .

[33]  M. Fixman Variational method for classical polarizabilities , 1981 .

[34]  Manfred Schmidt,et al.  Polyelectrolytes in solution , 1995 .

[35]  D. Stigter,et al.  Evaluation of the counterion condensation theory of polyelectrolytes. , 1995, Biophysical journal.

[36]  Andrey V. Dobrynin,et al.  Scaling theory of polyelectrolyte solutions , 1995 .

[37]  T. Pajkossy,et al.  Impedance of planar electrodes with scale-invariant capacitance distribution , 1992 .

[38]  D. Hoagland,et al.  Electrophoretic evidence for a new type of counterion condensation , 2004 .

[39]  R. Bignall,et al.  Radio frequency measurement of the dielectric constant of conducting liquids with tan δ up to 500 , 1969 .

[40]  S. Pyun,et al.  An investigation of the capacitance dispersion on the fractal carbon electrode with edge and basal orientations , 2003 .

[41]  H. Block,et al.  Dielectric relaxation in polymer solutions , 1970 .

[42]  C. P. Lindsey,et al.  Detailed comparison of the Williams–Watts and Cole–Davidson functions , 1980 .

[43]  M. Muthukumar,et al.  Theory of counter-ion condensation on flexible polyelectrolytes: adsorption mechanism. , 2004, The Journal of chemical physics.

[44]  C. Cametti,et al.  Dielectric relaxations in aqueous polyelectrolyte solutions: A scaling approach and the role of the solvent quality parameter , 2002 .

[45]  J. Kirkwood,et al.  Errata: The Intrinsic Viscosities and Diffusion Constants of Flexible Macromolecules in Solution , 1948 .

[46]  A. Khokhlov On the collapse of weakly charged polyelectrolytes , 1980 .

[47]  R. D. Levie,et al.  On the impedance of electrodes with rough interfaces , 1989 .

[48]  Theo Odijk,et al.  Dielectric Properties of Polyelectrolyte Solutions , 1984 .

[49]  P. Coppens,et al.  Mass spectrometric determination of the dissociation energies of the gaseous rare earth monoselenides and monotellurides , 1970 .

[50]  W. Krause,et al.  Semidilute solution rheology of polyelectrolytes with no added salt , 1999 .

[51]  Schwartz,et al.  Numerical studies of the impedance of blocking electrodes with fractal surfaces. , 1994, Physical review. B, Condensed matter.

[52]  G. S. Manning Limiting laws and counterion condensation in polyelectrolyte solutions. 8. Mixtures of counterions, species selectivity, and valence selectivity , 1984 .

[53]  H. Stanley,et al.  Statistical physics of macromolecules , 1995 .

[54]  D. Hunkeler,et al.  Study of polyion counterion interaction by electrochemical methods , 2002 .

[55]  B. Zimm,et al.  Distribution of counterions around a cylindrical polyelectrolyte and manning's condensation theory , 1984 .

[57]  P. Gennes Scaling Concepts in Polymer Physics , 1979 .

[58]  E. Grant,et al.  A bridge technique for measuring the permittivity of a biological solution between 1 and 100 MHz , 1975 .

[59]  Herman P. Schwan,et al.  CHAPTER 6 – DETERMINATION OF BIOLOGICAL IMPEDANCES1 , 1963 .

[60]  C. Cametti,et al.  Effect of ions on counterion fluctuation in low-molecular weight DNA dielectric dispersions. , 1984, Biophysical journal.

[61]  K. Ito,et al.  Low- and high-frequency relaxations in linear polyelectrolyte solutions with different counter-ion species , 1999 .

[62]  Theory of Polyelectrolyte Solutions , 1996, cond-mat/9601022.

[63]  C. Cametti,et al.  Scaling Behavior of the High-Frequency Dielectric Properties of Poly-l-lysine Aqueous Solutions , 2000 .

[64]  J. C. Wang,et al.  Impedance of a fractal electrolyte—electrode interface , 1988 .

[66]  P. Bottomley A technique for the measurement of tissue impedance from 1 to 100 MHz using a vector impedance meter. , 1978, Journal of physics E: Scientific instruments.

[67]  G. S. Manning On the interpretation of conductance measurements in salt-free polyelectrolyte solutions with an application to the helix-coil transition of poly(D-glutamic acid). , 1970, Biopolymers.

[68]  C. Cametti,et al.  Occurrence of an Intermediate Relaxation Process in Water-in-Oil Microemulsions below Percolation: The Electrical Modulus Formalism. , 2001, Journal of colloid and interface science.

[69]  R. Smith,et al.  Coaxial probe and apparatus for measuring the dielectric spectra of high pressure liquids and supercritical fluid mixtures , 2000 .

[70]  G. Schwarz Dielectric relaxation of biopolymers in solution , 1972 .

[71]  Y. Melnichenko,et al.  Dimensions of polyelectrolyte chains and concentration fluctuations in semidilute solutions of sodium–poly(styrene sulfonate) as measured by small-angle neutron scattering , 2001 .

[72]  Koji Asami,et al.  Characterization of heterogeneous systems by dielectric spectroscopy , 2002 .

[73]  M. Mandel,et al.  A measuring device for the determination of the electric permittivity of conducting liquids in the frequency range 2-500 kHz. I. The bridge , 1975 .

[74]  Christian Holm,et al.  Fraction of Condensed Counterions around a Charged Rod: Comparison of Poisson−Boltzmann Theory and Computer Simulations , 2000 .

[75]  Sandro Ridella,et al.  Measurements of Complex Dielectric Constant of Human Sera and Erythrocytes , 1979, IEEE Transactions on Instrumentation and Measurement.

[76]  S. Dukhin,et al.  Dielectric phenomena and the double layer in disperse systems and polyelectrolytes , 1974 .

[77]  R. D. Levie,et al.  The influence of surface roughness of solid electrodes on electrochemical measurements , 1965 .

[78]  T. Shedlovsky,et al.  The First Ionization Constant of Carbonic Acid, 0 to 38°, from Conductance Measurements , 1935 .

[79]  R. Oberthur,et al.  Radius of gyration of a polyion in salt free polyelectrolyte solutions measured by S. A. N. S. , 1985 .

[80]  K. Ito,et al.  Low- and high-frequency electric birefringence relaxations in linear polyelectrolyte solutions , 1999 .

[81]  G. Ramanathan,et al.  Statistical mechanics of electrolytes and polyelectrolytes. II. Counterion condensation on a line charge , 1982 .

[82]  K G Ong,et al.  Monitoring of bacteria growth using a wireless, remote query resonant-circuit sensor: application to environmental sensing. , 2001, Biosensors & bioelectronics.

[83]  K. Schmitz Macroions in solution and colloidal suspension , 1993 .

[84]  K. Cole,et al.  Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics , 1941 .

[85]  R. Colby,et al.  Rheology of Sulfonated Polystyrene Solutions , 1998 .

[86]  Rodrigo S. Neves,et al.  Characterisation of Au(111) and Au(210) ∣ aqueous solution interfaces by electrochemical immittance spectroscopy 1 Paper presented at the 1997 Fischer Symposium, 15–19 June 1997, Karlsruhe, Germany. 1 , 1998 .

[87]  R J Sheppard,et al.  Dielectric behaviour of biological molecules in solution , 1978 .

[88]  Noam Agmon Tetrahedral Displacement: The Molecular Mechanism behind the Debye Relaxation in Water , 1996 .

[89]  T. Pajkossy,et al.  On the origin of capacitance dispersion of rough electrodes , 2000 .

[90]  Gerald S. Manning,et al.  Limiting Laws and Counterion Condensation in Polyelectrolyte Solutions I. Colligative Properties , 1969 .

[91]  T. Pajkossy,et al.  Fractal dimension and fractional power frequency-dependent impedance of blocking electrodes , 1985 .

[92]  D. D. Honijk,et al.  Plane-parallel condenser with variable electrode-spacing for determination of electric permittivity of highly conducting liquids below 1 MHz. Part 2.—Experimental approach , 1971 .

[93]  Colby,et al.  Dynamics of semidilute polyelectrolyte solutions. , 1994, Physical review letters.

[94]  Katsuo Takahashi,et al.  Instrumental study of electrolytic conductance measurements using four-electrode cells , 1974 .

[95]  R. Levy,et al.  Computer simulations with explicit solvent: recent progress in the thermodynamic decomposition of free energies and in modeling electrostatic effects. , 1998, Annual review of physical chemistry.

[96]  K. Spiegler,et al.  Dielectric cell for radiofrequency measurement of conductive media , 1970 .

[97]  C. Cametti,et al.  Electrical conductivity of polyelectrolyte solutions in the semidilute and concentrated regime: The role of counterion condensation , 2002 .

[98]  P. Gennes,et al.  Small angle neutron scattering by semi-dilute solutions of polyelectrolyte , 1979 .

[99]  H. Schwan,et al.  Simple Technique to Control the Stray Field of Electrolytic Cells , 1960 .

[100]  S. Takashima Dielectric Dispersion of Deoxyribonucleic Acid. II1 , 1966 .

[101]  Gerald S. Manning,et al.  Counterion binding in polyelectrolyte theory , 1979 .

[102]  M. Mandel,et al.  A measuring device for the determination of the electric permittivity of conducting liquids in the frequency range 2-500 kHz. II: The measuring cell , 1975 .

[103]  R. Cole,et al.  Dielectric Relaxation in Glycerine , 1950 .

[104]  A. Stogryn,et al.  Equations for Calculating the Dielectric Constant of Saline Water (Correspondence) , 1971 .

[105]  C. Holm,et al.  Single-Chain Properties of Polyelectrolytes in Poor Solvent† , 2003 .

[106]  Y. Feldman,et al.  Time domain dielectric spectroscopy. A new effective tool for physical chemistry investigation , 1992 .

[107]  K. Ito,et al.  Anisotropic counterion polarizations and their dynamics in aqueous polyelectrolytes as studied by frequency-domain electric birefringence relaxation spectroscopy , 1989 .

[108]  P. Pincus,et al.  Counterion-Condensation-Induced Collapse of Highly Charged Polyelectrolytes , 1998 .

[109]  J. Oncley Studies of the Dielectric Properties of Protein Solutions. I. Carboxyhemoglobin1,2 , 1938 .

[110]  J. Kirkwood The general theory of irreversible processes in solutions of macromolecules , 1996 .

[111]  C. Wandrey Molecular mass and ionic strength dependence of electrochemical properties of flexible polyelectrolytes , 1996 .

[112]  D. Hunkeler,et al.  Counterion Activity of Highly Charged Strong Polyelectrolytes , 2000 .

[113]  G. H. Markx,et al.  Substitution and spreadsheet methods for analysing dielectric spectra of biological systems , 1990, European Biophysics Journal.

[114]  Rudolph A. Marcus,et al.  Calculation of Thermodynamic Properties of Polyelectrolytes , 1955 .

[115]  G. S. Manning Limiting laws and counterion condensation in polyelectrolyte solutions. 7. Electrophoretic mobility and conductance , 1981 .

[116]  Qi Liao,et al.  Molecular dynamics simulations of polyelectrolyte solutions: Osmotic coefficient and counterion condensation , 2003 .

[117]  A. Blumen,et al.  Disorder Effects on Relaxational Processes , 1994 .

[118]  Kholodenko Al,et al.  Painleve III and Manning's counterion condensation. , 1995 .

[119]  M. Mandel,et al.  A measuring device for the determination of the electric permittivity of conducting liquids in the frequency range 1-100 MHz , 1976 .

[120]  Y. Rabin,et al.  Viscosity of dilute polyelectrolyte solutions , 1988 .

[121]  C. Wandrey Concentration regimes in polyelectrolyte solutions , 1999 .

[122]  C. Cametti,et al.  A comparative study of the high‐frequency dielectric properties of poly(α‐glutamate) and poly(γ‐glutamate) aqueous solutions , 1996, Biopolymers.

[123]  F. Oosawa Counterion fluctuation and dielectric dispersion in linear polyelectrolytes , 1970 .

[124]  T. Odijk Possible Scaling Relations for Semidilute Polyelectrolyte Solutions , 1979 .

[125]  R. Varoqui,et al.  Relaxation and electrophoretic effects in polyelectrolyte solutions. I. Salt‐free solutions , 1978 .

[126]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[127]  Udo Kaatze,et al.  Hydrogen network fluctuations and dielectric spectrometry of liquids , 2002 .

[128]  D. Davidson,et al.  DIELECTRIC RELAXATION IN LIQUIDS: I. THE REPRESENTATION OF RELAXATION BEHAVIOR , 1961 .

[129]  M. Mandel,et al.  Electric permittivity and dielectric dispersion of low-molecular weight DNA at low ionic strength. , 1979, Biophysical chemistry.

[130]  C. Cametti,et al.  Determination of Polyelectrolyte Charge and Interaction with Water Using Dielectric Spectroscopy , 2002 .

[131]  G. Koper,et al.  ELECTRODE EFFECTS IN DIELECTRIC SPECTROSCOPY OF COLLOIDAL SUSPENSIONS , 1997 .

[132]  C. Cametti,et al.  Electrical Conductivity of Dilute and Semidilute Aqueous Polyelectrolyte Solutions. A Scaling Theory Approach , 1999 .

[133]  C. Cametti,et al.  Electrical conductivity of aqueous polyelectrolyte solutions in the presence of counterion condensation: the scaling approach revisited. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[134]  A. Takahashi,et al.  The Osmotic Pressure of Polyelectrolyte in Neutral Salt Solutions , 1970 .

[135]  R. C. Hayes,et al.  Electrical conductivity of aqueous solutions of salts of polystyrenesulfonic acid with univalent and divalent counterions , 1975 .

[136]  F. Oosawa,et al.  Dielectric properties of polyelectrolytes. II. A theory of dielectric increment due to ion fluctuation by a matrix method , 1972 .

[137]  Clifford D. Ferris,et al.  Four‐Electrode Null Techniques for Impedance Measurement with High Resolution , 1968 .

[138]  C. Cametti,et al.  High-frequency dielectric study of side-chain dynamics in poly(lysine) aqueous solutions. , 2000, Biopolymers.

[139]  T. Kanaya,et al.  Phase diagram of polyelectrolyte solutions , 1988 .

[140]  D. Bedeaux,et al.  Theory of electrode polarization: application to parallel plate cell dielectric spectroscopy experiments , 2002 .

[141]  J. Leyte,et al.  Chain self-diffusion in aqueous salt-free solutions of sodium poly(styrenesulfonate) , 1993 .

[142]  Cell model and Poisson-Boltzmann theory: A brief introduction , 2001, cond-mat/0112096.

[143]  N. Shinyashiki,et al.  Dynamics of Water in a Polymer Matrix Studied by a Microwave Dielectric Measurement , 1998 .

[144]  J. C. Wang,et al.  Comments on a fractal model for blocking interfaces , 1989 .

[145]  N. Shinyashiki,et al.  Dielectric study on molecular motions of poly(glutamic acid) in aqueous solution over a frequency range of 105-1010 Hz , 1993 .

[146]  P. C. Fannin,et al.  Dielectric properties of thin solid films formed on silicon , 2001 .

[147]  M. Fixman Charged macromolecules in external fields. I. The sphere , 1980 .

[148]  Rosa María Velasco,et al.  Remarks on polyelectrolyte conformation , 1976 .

[149]  E. Warburg,et al.  Ueber das Verhalten sogenannter unpolarisirbarer Elektroden gegen Wechselstrom , 1899 .

[150]  Valerica Raicu,et al.  Dielectric properties of rat liver in vivo: a noninvasive approach using an open-ended coaxial probe at audio/radio frequencies , 1998 .

[151]  M. Imai,et al.  Concentration dependence of radius of gyration of sodium poly(styrenesulfonate) over a wide range of concentration studied by small-angle neutron scattering , 1999 .