A quasi-Monte Carlo approach to particle simulation of the heat equation
暂无分享,去创建一个
[1] P. K. Sarkar,et al. A comparative study of Pseudo and Quasi random sequences for the solution intergral equations , 1987 .
[2] Paul Bratley,et al. Algorithm 659: Implementing Sobol's quasirandom sequence generator , 1988, TOMS.
[3] I. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .
[4] Harald Niederreiter,et al. Quasi-Monte Carlo Methods for Multidimensional Numerical Integration , 1988 .
[5] William H. Press,et al. Quasi‐ (that is, Sub‐) Random Numbers , 1989 .
[6] H. Niederreiter. Point sets and sequences with small discrepancy , 1987 .
[7] Bennett L. Fox,et al. Algorithm 647: Implementation and Relative Efficiency of Quasirandom Sequence Generators , 1986, TOMS.
[8] Christian Lécot. Low discrepancy sequences for solving the Boltzmann equation , 1989 .
[9] Graeme A. Bird,et al. Molecular Gas Dynamics , 1976 .
[10] H. Wozniakowski. Average case complexity of multivariate integration , 1991 .
[11] J. Halton. On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .
[12] H. Niederreiter. Quasi-Monte Carlo methods and pseudo-random numbers , 1978 .
[13] Russel E. Caflisch,et al. Quasi-Random Sequences and Their Discrepancies , 1994, SIAM J. Sci. Comput..