An Exact Solution for Classic Coupled Thermoelasticity in Spherical Coordinates

In this paper, the classic coupled Magneto-thermo-elasticity model of hollow and solid cylinders under radial-symmetric loading condition (r, t) is considered. A full analytical and the direct method based on Fourier Hankel series and Laplace transform is used, and an exact unique solution of the classic coupled equations is presented. The thermal and mechanical boundary conditions, the body force, the heat source and magnetic field vector are considered in the most general forms, where no limiting assumption is used. This generality allows to simulate a variety of applicable problems. The results are presented for thermal and mechanical shock, separately, and compare the effect of magnetic field on temperature and displacement. © 2012 IAU, Arak Branch. All rights reserved.

[1]  M. Jabbari,et al.  AN EXACT SOLUTION FOR QUASI-STATIC PORO-THERMOELASTICITY IN SPHERICAL COORDINATES , 2011 .

[2]  M. Jabbari,et al.  An Exact Solution for Lord-Shulman Generalized Coupled Thermoporoelasticity in Spherical Coordinates , 2010 .

[3]  M. Jabbari,et al.  An Exact Solution for Classic Coupled Thermoporoelasticity in Axisymmetric Cylinder , 2010 .

[4]  M. Jabbari,et al.  An Exact Solution for Classic Coupled Thermoporoelasticity in Cylindrical Coordinates , 2009 .

[5]  M. Eslami,et al.  Generalized coupled thermoelasticity of functionally graded annular disk considering the Lord–Shulman theory , 2008 .

[6]  A. Berezovski,et al.  Nonlinear deformation waves in solids and dispersion , 2007 .

[7]  H. Dai,et al.  Magnetothermoelastic interactions in hollow structures of functionally graded material subjected to mechanical loads , 2007 .

[8]  B. Bai Fluctuation responses of saturated porous media subjected to cyclic thermal loading , 2006 .

[9]  M. Eslami,et al.  Coupled Thermoelasticity of Functionally Graded Disk , 2006 .

[10]  M. Eslami,et al.  Generalized Coupled Thermoelasticity of a Layer , 2006 .

[11]  B. Bai Response of saturated porous media subjected to local thermal loading on the surface of semi-infinite space , 2006 .

[12]  M. Berezovski,et al.  Numerical simulation of nonlinear elastic wave propagation in piecewise homogeneous media , 2006 .

[13]  M. Eslami,et al.  GENERALIZED COUPLED THERMOELASTICITY OF DISKS BASED ON THE LORD–SHULMAN MODEL , 2004 .

[14]  A. M. Abd-Alla,et al.  Magneto-thermo-viscoelastic interactions in an unbounded body with a spherical cavity subjected to a periodic loading , 2004, Appl. Math. Comput..

[15]  S. Yapeng,et al.  A two-dimensional generalized thermal shock problem for a half-space in electromagneto-thermoelasticity , 2004 .

[16]  Gérard A. Maugin,et al.  Simulation of wave and front propagation in thermoelastic materials with phase transformation , 2003 .

[17]  Magdy A. Ezzat,et al.  Magnetothermoelasticity with two relaxation times in conducting medium with variable electrical and thermal conductivity , 2003, Appl. Math. Comput..

[18]  W. Q. Chen,et al.  Alternative state space formulations for magnetoelectric thermoelasticity with transverse isotropy and the application to bending analysis of nonhomogeneous plates , 2003 .

[19]  Gérard A. Maugin,et al.  Numerical simulation of two-dimensional wave propagation in functionally graded materials , 2003 .

[20]  A. Eraslan,et al.  COMPUTATION OF TRANSIENT THERMAL STRESSES IN ELASTIC-PLASTIC TUBES: EFFECT OF COUPLING AND TEMPERATURE-DEPENDENT PHYSICAL PROPERTIES , 2002 .

[21]  Win-Jin Chang,et al.  AN INVERSE PROBLEM OF COUPLED THERMOELASTICITY IN PREDICTING HEAT FLUX AND THERMAL STRESSES BY STRAIN MEASUREMENT , 2002 .

[22]  Yu-Ching Yang,et al.  Transient coupled thermoelastic analysis of an annular fin , 2001 .

[23]  Haw-Long Lee,et al.  Inverse problem of coupled thermoelasticity for prediction of heat flux and thermal stresses in an annular cylinder , 2001 .

[24]  Gérard A. Maugin,et al.  Simulation of thermoelastic wave propagation by means of a composite wave-propagation algorithm , 2001 .

[25]  Francesco Ubertini,et al.  A mixed variational method for linear coupled thermoelastic analysis , 2001 .

[26]  M. R. Eslami,et al.  BEM analysis of thermal and mechanical shock in a two-dimensional finite domain considering coupled thermoelasticity , 2000 .

[27]  J. Achenbach Explicit solutions for carrier waves supporting surface waves and plate waves , 1998 .

[28]  P. Wagner Fundamental matrix of the system of dynamic linear thermoelasticity , 1994 .

[29]  Richard B. Hetnarski,et al.  GENERALIZED THERMOELASTICITY: CLOSED-FORM SOLUTIONS , 1993 .

[30]  Z. L. Li,et al.  Propagation of horizontally polarized transverse waves in a solid with a periodic distribution of cracks , 1986 .

[31]  Jan Drewes Achenbach,et al.  REFLECTION AND TRANSMISSION OF ELASTIC WAVES BY A PERIODIC ARRAY OF CRACKS. , 1985 .

[32]  J. Achenbach,et al.  MODE-III CRACK KINKING UNDER STRESS-WAVE LOADING , 1982 .

[33]  Leon M Keer,et al.  Scattering of elastic waves by a surface-breaking crack , 1980 .

[34]  B. Auld,et al.  Acoustic fields and waves in solids , 1973 .

[35]  A. Bahtui,et al.  Coupled thermoelasticity of functionally graded cylindrical shells , 2007 .

[36]  X. Wang,et al.  MAGNETOTHERMODYNAMIC STRESS AND PERTURBATION OF MAGNETIC FIELD VECTOR IN A NON-HOMOGENEOUS THERMOELASTIC CYLINDER , 2006 .

[37]  H. Dai,et al.  The dynamic response and perturbation of magnetic field vector of orthotropic cylinders under various shock loads , 2006 .

[38]  H. Georgiadis,et al.  Rayleigh Waves Generated by a Thermal Source: A Three- Dimensional Transient Thermoelasticity Solution , 2005 .

[39]  J. N. Sharma,et al.  RAYLEIGH–LAMB WAVES IN MAGNETO-THERMOELASTIC HOMOGENEOUS ISOTROPIC PLATE , 2004 .

[40]  R. Hetnarski,et al.  Generalized thermoelasticity: response of semi-space to a short laser pulse , 1994 .

[41]  J. C. Misra,et al.  MAGNETOTHERMOELASTIC INTERACTION IN AN INFINITE ELASTIC CONTINUUM WITH A CYLINDRICAL HOLE SUBJECTED TO RAMP-TYPE HEATING , 1991 .

[42]  G. Roy,et al.  Temperature-rate dependent magnetothermoelastic waves in a finitely conducting elastic half-space , 1990 .

[43]  Leslie Morland,et al.  Spherical elastic-plastic wave solutions , 1988 .

[44]  R. Narasimhan,et al.  Magnetothermoelastic stress waves in a circular cylinder , 1987 .

[45]  J. Achenbach,et al.  Reflection of a beam of elastic waves by a periodic surface profile , 1985 .

[46]  S. Roychoudhuri,et al.  The coupled magnetothermoelastic problem in elastic half-space with two relaxation times , 1985 .

[47]  Jan Drewes Achenbach,et al.  High-frequency scattering of elastic waves from cylindrical cavities☆ , 1984 .

[48]  Y. Tanigawa,et al.  Coupled thermal stress problem in a hollow sphere under a partial heating , 1982 .

[49]  B. Maruszewski Dynamical magnetothermoelastic problem in cicular cylinders—I: Basic equations , 1981 .

[50]  G. F. Simmons Differential Equations With Applications and Historical Notes , 1972 .

[51]  R. Hetnarski SOLUTION OF THE COUPLED PROBLEM OF THERMOELASTICITY IN THE FORM OF SERIES OF FUNCTIONS , 1964 .

[52]  J. Achenbach Wave propagation in elastic solids , 1962 .