MOCAT2: a metagenomic assembly, annotation and profiling framework

Summary: MOCAT2 is a software pipeline for metagenomic sequence assembly and gene prediction with novel features for taxonomic and functional abundance profiling. The automated generation and efficient annotation of non-redundant reference catalogs by propagating pre-computed assignments from 18 databases covering various functional categories allows for fast and comprehensive functional characterization of metagenomes. Availability and Implementation: MOCAT2 is implemented in Perl 5 and Python 2.7, designed for 64-bit UNIX systems and offers support for high-performance computer usage via LSF, PBS or SGE queuing systems; source code is freely available under the GPL3 license at http://mocat.embl.de. Contact: bork@embl.de Supplementary information: Supplementary data are available at Bioinformatics online.

[1]  T. R. Licht,et al.  A catalog of the mouse gut metagenome , 2015, Nature Biotechnology.

[2]  Susumu Goto,et al.  Data, information, knowledge and principle: back to metabolism in KEGG , 2013, Nucleic Acids Res..

[3]  Tungadri Bose,et al.  COGNIZER: A Framework for Functional Annotation of Metagenomic Datasets , 2015, PloS one.

[4]  I-Min A. Chen,et al.  IMG/M: a data management and analysis system for metagenomes , 2007, Nucleic Acids Res..

[5]  Xin Chen,et al.  dbCAN: a web resource for automated carbohydrate-active enzyme annotation , 2012, Nucleic Acids Res..

[6]  Alexandros Stamatakis,et al.  Metagenomic species profiling using universal phylogenetic marker genes , 2013, Nature Methods.

[7]  Peer Bork,et al.  MOCAT: A Metagenomics Assembly and Gene Prediction Toolkit , 2012, PloS one.

[8]  J. Beisson,et al.  Paramecium tetraurelia: the renaissance of an early unicellular model. , 2010, Cold Spring Harbor protocols.

[9]  S. Schuster,et al.  Integrative analysis of environmental sequences using MEGAN4. , 2011, Genome research.

[10]  Adam Zemla,et al.  MvirDB—a microbial database of protein toxins, virulence factors and antibiotic resistance genes for bio-defence applications , 2006, Nucleic Acids Res..

[11]  Davide Heller,et al.  eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences , 2015, Nucleic Acids Res..

[12]  David S. Wishart,et al.  DrugBank 3.0: a comprehensive resource for ‘Omics’ research on drugs , 2010, Nucleic Acids Res..

[13]  Jens Roat Kultima,et al.  An integrated catalog of reference genes in the human gut microbiome , 2014, Nature Biotechnology.

[14]  Fabian Schreiber,et al.  CoMet—a web server for comparative functional profiling of metagenomes , 2011, Nucleic Acids Res..

[15]  P. Bork,et al.  A human gut microbial gene catalogue established by metagenomic sequencing , 2010, Nature.

[16]  Fangfang Xia,et al.  The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST) , 2013, Nucleic Acids Res..

[17]  Bernard Henrissat,et al.  Metabolic Reconstruction for Metagenomic Data and Its Application to the Human Microbiome , 2012, PLoS Comput. Biol..

[18]  Peer Bork,et al.  Classification and quantification of bacteriophage taxa in human gut metagenomes , 2014, The ISME Journal.

[19]  Molly K. Gibson,et al.  Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology , 2014, The ISME Journal.

[20]  Chao Xie,et al.  Fast and sensitive protein alignment using DIAMOND , 2014, Nature Methods.

[21]  Zhen Xu,et al.  ICEberg: a web-based resource for integrative and conjugative elements found in Bacteria , 2011, Nucleic Acids Res..

[22]  J. Marchini,et al.  Atrophic Cardiac Remodeling Induced by Taurine Deficiency in Wistar Rats , 2012, PloS one.

[23]  Mihai Pop,et al.  ARDB—Antibiotic Resistance Genes Database , 2008, Nucleic Acids Res..

[24]  Bas E. Dutilh,et al.  SUPER-FOCUS: a tool for agile functional analysis of shotgun metagenomic data , 2015, Bioinform..

[25]  Timothy L. Tickle,et al.  Computational meta'omics for microbial community studies , 2013, Molecular systems biology.

[26]  U. Sandhu,et al.  Strict control of transgene expression in a mouse model for sensitive biological applications based on RMCE compatible ES cells , 2010, Nucleic Acids Res..

[27]  Jian Yang,et al.  VFDB 2012 update: toward the genetic diversity and molecular evolution of bacterial virulence factors , 2011, Nucleic Acids Res..

[28]  Robert Olson,et al.  Real Time Metagenomics: Using k-mers to annotate metagenomes , 2012, Bioinform..

[29]  C. Chothia,et al.  Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. , 2001, Journal of molecular biology.

[30]  Jens Roat Kultima,et al.  Potential of fecal microbiota for early‐stage detection of colorectal cancer , 2014 .

[31]  Barry L. Stoddard,et al.  Natural and engineered nicking endonucleases—from cleavage mechanism to engineering of strand-specificity , 2010, Nucleic Acids Res..

[32]  D. Antonopoulos,et al.  Using the metagenomics RAST server (MG-RAST) for analyzing shotgun metagenomes. , 2010, Cold Spring Harbor protocols.

[33]  Ujjwal Maulik,et al.  DBETH: A Database of Bacterial Exotoxins for Human , 2011, Nucleic Acids Res..

[34]  Ying Gao,et al.  Bioinformatics Applications Note Sequence Analysis Cd-hit Suite: a Web Server for Clustering and Comparing Biological Sequences , 2022 .

[35]  J. Derisi,et al.  Profile Hidden Markov Models for the Detection of Viruses within Metagenomic Sequence Data , 2014, PloS one.

[36]  Peter Meinicke,et al.  UProC: tools for ultra-fast protein domain classification , 2014, Bioinform..

[37]  Andrew C. Pawlowski,et al.  The Comprehensive Antibiotic Resistance Database , 2013, Antimicrobial Agents and Chemotherapy.

[38]  Maulik Shukla,et al.  Curation, integration and visualization of bacterial virulence factors in PATRIC , 2014, Bioinform..

[39]  Allyson L. Byrd,et al.  Biogeography and individuality shape function in the human skin metagenome , 2014, Nature.

[40]  P. Bork,et al.  Accurate and universal delineation of prokaryotic species , 2013, Nature Methods.

[41]  M. Sogin,et al.  A single genus in the gut microbiome reflects host preference and specificity , 2014, The ISME Journal.

[42]  Luis Pedro Coelho,et al.  Structure and function of the global ocean microbiome , 2015, Science.

[43]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..