On the geometry of asymptotically flat manifolds

In this paper, we investigate the geometry of asymptotically flat manifolds with controlled holonomy. We show that any end of such manifold admits a refined torus fibration over an ALE manifold. In addition, we prove a Hitchin-Thorpe inequality for oriented Ricci-flat $4$-manifolds with curvature decay and controlled holonomy. As an application, we show that any complete asymptotically flat Ricci-flat metric on a $4$-manifold which is homeomorphic to $\mathbb R^4$ must be isometric to the Euclidean or the Taub-NUT metric, provided that the tangent cone at infinity is not $\mathbb R \times \mathbb R_+$.

[1]  J. Cheeger,et al.  Collapsing riemannian manifolds while keeping their curvature bounded. I. , 1986 .

[2]  S. Brendle Ricci Flow and the Sphere Theorem , 2010 .

[3]  S. Bando,et al.  On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth , 1989 .

[4]  H. Hein Gravitational instantons from rational elliptic surfaces , 2012 .

[5]  V. Minerbe Rigidity for Multi-Taub-NUT metrics , 2009, 0910.5792.

[6]  P. Kronheimer A Torelli-type theorem for gravitational instantons , 1989 .

[7]  N. Hitchin Compact four-dimensional Einstein manifolds , 1974 .

[8]  Gebräuchliche Fertigarzneimittel,et al.  V , 1893, Therapielexikon Neurologie.

[9]  K. Tahara,et al.  On the Finite Subgroups of GL (3, Z) , 1971, Nagoya Mathematical Journal.

[10]  Georges de Rham Complexes à automorphismes et homéomorphie différentiable , 1950 .

[11]  Kenji Fukaya,et al.  Nilpotent structures and invariant metrics on collapsed manifolds , 1992 .

[12]  U. Abresch,et al.  Lower curvature bounds, Toponogov's theorem, and bounded topology. II , 1985 .

[13]  J. Milnor Two Complexes Which are Homeomorphic But Combinatorially Distinct , 1961 .

[14]  Hitchin-Thorpe inequality for noncompact Einstein 4-manifolds , 2006, math/0612105.

[15]  Joseph A. Wolf Spaces of Constant Curvature , 1984 .

[16]  Yu Li Ricci flow on asymptotically Euclidean manifolds , 2016, 1603.05336.

[17]  Xiaochun Rong On the fundamental groups of manifolds of positive sectional curvature , 1996 .

[18]  D. Burago,et al.  A Course in Metric Geometry , 2001 .

[19]  N. Hitchin,et al.  Gravitational Instantons of Type Dk , 2003, hep-th/0310084.

[20]  T. Peters Gravitation , 2018, PHYSIK.

[21]  H. Nakajima Self-Duality of ALE Ricci-Flat 4-Manifolds and Positive Mass Theorem , 1990 .

[22]  A. Dancer Dihedral singularities and gravitational instantons , 1993 .

[23]  D. Page A periodic but nonstationary gravitational instanton , 1981 .

[24]  V. Minerbe On the asymptotic geometry of gravitational instantons , 2010 .

[25]  V. Minerbe A Mass for ALF Manifolds , 2008, 0803.2873.

[26]  Jürgen Jost,et al.  Harmonic mappings between Riemannian manifolds , 1983 .

[27]  R. Kirby The topology of 4-manifolds , 1989 .

[28]  A. Szczepański Eta invariants for flat manifolds , 2010, 1001.1270.

[29]  K. Fukaya Collapsing Riemannian manifolds to ones with lower dimension II , 1989 .

[30]  S. Hawking,et al.  Classification of Gravitational Instanton symmetries , 1979 .

[31]  Mingqing Ouyang Geometric invariants for Seifert fibred 3-manifolds , 1994 .

[32]  M. Atiyah,et al.  The Geometry and Dynamics of Magnetic Monopoles , 1988 .

[33]  I. Holopainen Riemannian Geometry , 1927, Nature.

[34]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[35]  Extensions of the Rauch comparison theorem to submanifolds , 1966 .

[36]  A. Kasue A compactification of a manifold with asymptotically nonnegative curvature , 1988 .

[37]  P. Kronheimer The construction of ALE spaces as hyper-Kähler quotients , 1989 .

[38]  A. Kasue A convergence theorem for Riemannian manifolds and some applications , 1989, Nagoya Mathematical Journal.

[39]  Weighted Sobolev Inequalities and Ricci Flat Manifolds , 2006, math/0602136.

[40]  Xiuxiong Chen,et al.  Gravitational instantons with faster than quadratic curvature decay (III) , 2016, Mathematische Annalen.

[41]  H. Grimmer,et al.  Comment on a paper by Tahara on the finite subgroups of $GL(3,Z)$ , 1972 .

[42]  J. Cheeger,et al.  Regularity of Einstein manifolds and the codimension 4 conjecture , 2014, 1406.6534.

[43]  José Montesinos,et al.  Classical tessellations and three-manifolds , 1987 .

[44]  Gang Tian,et al.  The Geometrization Conjecture , 2014 .

[45]  A. Petrunin,et al.  Asymptotical flatness and cone structure at infinity , 2016, 1607.06257.

[46]  V. Turaev Towards the topological classification of geometric 3-manifolds , 1988 .

[47]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[48]  K. Fukaya Collapsing Riemannian manifolds to ones of lower dimensions , 1987 .

[49]  John Lott,et al.  Manifolds with quadratic curvature decay and slow volume growth , 1998, math/9809097.

[50]  Wan-Xiong Shi Deforming the metric on complete Riemannian manifolds , 1989 .

[51]  V. Minerbe,et al.  A Kummer Construction for Gravitational Instantons , 2010, 1005.5133.

[52]  P. Buser,et al.  Gromov's almost flat manifolds , 1981 .

[53]  G. Tian ASPECTS OF METRIC GEOMETRY OF FOUR MANIFOLDS , 2006 .

[54]  Andrew J. Hanson,et al.  Gravitation, Gauge Theories and Differential Geometry , 1980 .

[55]  Kenji Fukaya,et al.  A boundary of the set of the Riemannian manifolds with bounded curvatures and diameters , 1988 .

[56]  M. Gromov Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .

[57]  Jeff A. Viaclovsky,et al.  Quotient singularities, eta invariants, and self-dual metrics , 2015, 1501.03234.

[58]  J. M. Montesinos-Amilibia Classical Tessellations and Three-Manifolds , 2009 .

[59]  Koichi Nagano,et al.  The asymptotic cones of manifolds of roughly non-negative radial curvature , 2005 .