Two-Dimensional Massless Dirac Fermions in Antiferromagnetic AFe_{2}As_{2} (A=Ba,Sr).

We report infrared studies of AFe_{2}As_{2} (A=Ba, Sr), two representative parent compounds of iron-arsenide superconductors, at magnetic fields (B) up to 17.5 T. Optical transitions between Landau levels (LLs) were observed in the antiferromagnetic states of these two parent compounds. Our observation of a sqrt[B] dependence of the LL transition energies, the zero-energy intercepts at B=0  T under the linear extrapolations of the transition energies and the energy ratio (∼2.4) between the observed LL transitions, combined with the linear band dispersions in two-dimensional (2D) momentum space obtained by theoretical calculations, demonstrates the existence of massless Dirac fermions in the antiferromagnet BaFe_{2}As_{2}. More importantly, the observed dominance of the zeroth-LL-related absorption features and the calculated bands with extremely weak dispersions along the momentum direction k_{z} indicate that massless Dirac fermions in BaFe_{2}As_{2} are 2D. Furthermore, we find that the total substitution of the barium atoms in BaFe_{2}As_{2} by strontium atoms not only maintains 2D massless Dirac fermions in this system, but also enhances their Fermi velocity, which supports that the Dirac points in iron-arsenide parent compounds are topologically protected.

[1]  J. Carbotte,et al.  Magneto-optical conductivity of Weyl semimetals , 2013, 1305.0275.

[2]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[3]  F. Teppe,et al.  Observation of three-dimensional massless Kane fermions in a zinc-blende crystal , 2014, Nature Physics.

[4]  D. Smirnov,et al.  Temperature-driven massless Kane fermions in HgCdTe crystals , 2016, Nature Communications.

[5]  B. Hodson,et al.  The effect of passage in vitro and in vivo on the properties of murine fibrosarcomas. II. Sensitivity to cell-mediated cytotoxicity in vitro. , 1985, British Journal of Cancer.

[6]  G. Kotliar,et al.  Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides. , 2011, Nature materials.

[7]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[8]  Jiangping Hu,et al.  Spin and lattice structures of single-crystalline Srfe2As2 , 2008, 0807.1077.

[9]  H Germany,et al.  Effects of magnetism and doping on the electron-phonon coupling in BaFe 2 As 2 , 2010, 1004.1943.

[10]  Su-Yang Xu,et al.  Observation of Fermi arc surface states in a topological metal , 2015, Science.

[11]  Z. K. Liu,et al.  Experimental Realization of a Three-Dimensional Topological Insulator , 2010 .

[12]  H. Hosono,et al.  Ultralow-dissipative conductivity by Dirac fermions in BaFe$_2$As$_2$ , 2012, 1202.0399.

[13]  X. Dai,et al.  Observation of Dirac cone electronic dispersion in BaFe2As2. , 2009, Physical review letters.

[14]  J. Kuba,et al.  Magneto-Optical Signature of Massless Kane Electrons in Cd_{3}As_{2}. , 2016, Physical review letters.

[15]  V. Gusynin,et al.  Magneto-optical conductivity in graphene , 2007, 0705.3783.

[16]  H. Hwang,et al.  Landau level spectroscopy of Dirac electrons in a polar semiconductor with giant Rashba spin splitting. , 2013, Physical review letters.

[17]  Y. Tomioka,et al.  Complete Fermi surface in BaFe2As2 observed via Shubnikov-de Haas oscillation measurements on detwinned single crystals. , 2011, Physical review letters.

[18]  Wei Bao,et al.  Neutron-diffraction measurements of magnetic order and a structural transition in the parent BaFe2As2 compound of FeAs-based high-temperature superconductors. , 2008, Physical review letters.

[19]  G. Li,et al.  Origin of the spin density wave instability in AFe2As2 (A=Ba,Sr) as revealed by optical spectroscopy. , 2008, Physical review letters.

[20]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[21]  Gang Xu,et al.  Dirac fermions in an antiferromagnetic semimetal , 2016, Nature Physics.

[22]  M. Dressel,et al.  Persistent Detwinning of Iron-Pnictide EuFe_{2}As_{2} Crystals by Small External Magnetic Fields. , 2014, Physical review letters.

[23]  R. Prozorov,et al.  Direct imaging of the structural domains in iron pnictides AFe2As2 (A = Ca, Sr, Ba) , 2009, 0904.2337.

[24]  Q. Gibson,et al.  Experimental realization of a three-dimensional Dirac semimetal. , 2013, Physical review letters.

[25]  X. Qi,et al.  Topological insulators and superconductors , 2010, 1008.2026.

[26]  K. Tanigaki,et al.  Both electron and hole Dirac cone states in Ba(FeAs)2 confirmed by magnetoresistance. , 2010, Physical review letters.

[27]  Z. J. Wang,et al.  Discovery of a Three-Dimensional Topological Dirac Semimetal, Na3Bi , 2013, Science.

[28]  J. Chu,et al.  In-plane electronic anisotropy in underdoped Ba(Fe 1-x Co x ) 2 As 2 revealed by partial detwinning in a magnetic field , 2009, 0911.3878.

[29]  X. Dai,et al.  Weyl Semimetal Phase in Noncentrosymmetric Transition-Metal Monophosphides , 2014, 1501.00060.

[30]  P. Kim,et al.  Infrared spectroscopy of Landau levels of graphene. , 2007, Physical Review Letters.

[31]  H. Takagi,et al.  Momentum-resolved Landau-level spectroscopy of Dirac surface state in Bi 2 Se 3 , 2010, 1003.0100.

[32]  Xi Chen,et al.  Landau quantization of topological surface states in Bi2Se3. , 2010, Physical review letters.

[33]  D. Johnston,et al.  The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides , 2010, 1005.4392.

[34]  Y. Tomioka,et al.  Unprecedented anisotropic metallic state in undoped iron arsenide BaFe2As2 revealed by optical spectroscopy , 2011, Proceedings of the National Academy of Sciences.

[35]  Observation of Weyl nodes in TaAs , 2015, 1503.09188.

[36]  Q. Gibson,et al.  Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. , 2014, Nature materials.

[37]  Dung-Hai Lee,et al.  Nodal Spin Density Wave and band topology of the FeAs based materials , 2008, 0805.3535.

[38]  E. Palik,et al.  Infrared and microwave magnetoplasma effects in semiconductors , 1970 .

[39]  K. Ohgushi,et al.  High-Field Studies on Single Crystals of EuFe2As2 , 2010 .

[40]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[41]  G. Kotliar,et al.  Magnetism and charge dynamics in iron pnictides , 2010, 1007.2867.

[42]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[43]  E. Dagotto,et al.  Magnetism and its microscopic origin in iron-based high-temperature superconductors , 2012, Nature Physics.

[44]  Junping Li,et al.  Microstructure and tetragonal-to-orthorhombic phase transition of AFe(2)As(2) (A=Sr,Ca) as seen via transmission electron microscopy , 2009 .

[45]  Lin Zhao,et al.  Direct evidence of interaction-induced Dirac cones in a monolayer silicene/Ag(111) system , 2015, Proceedings of the National Academy of Sciences.

[46]  Zhongkai Liu,et al.  Weyl semimetal phase in the non-centrosymmetric compound TaAs , 2015, Nature Physics.

[47]  C. Beenakker Andreev reflection and Klein tunneling in graphene , 2007, 0710.3848.

[48]  H. Ikuta,et al.  Spin-Density-Wave Gap with Dirac Nodes and Two-Magnon Raman Scattering in BaFe2As2 , 2012, 1201.5207.

[49]  C. Berger,et al.  Tuning the electron-phonon coupling in multilayer graphene with magnetic fields. , 2009, Physical review letters.

[50]  N. Harrison,et al.  Dirac nodal pockets in the antiferromagnetic parent phase of FeAs superconductors , 2009, 0910.4199.

[51]  P. Canfield,et al.  Optical properties of AFe2As2 ( A=Ca , Sr, and Ba) single crystals , 2016, 1608.05709.

[52]  M L Sadowski,et al.  Landau level spectroscopy of ultrathin graphite layers. , 2006, Physical review letters.

[53]  Y. Kim,et al.  Anisotropic Dirac fermions in a Bi square net of SrMnBi2. , 2011, Physical review letters.

[54]  T. Tohyama,et al.  Topological and transport properties of Dirac fermions in an antiferromagnetic metallic phase of iron-based superconductors. , 2010, Physical review letters.

[55]  Hideo Hosono,et al.  Iron-based layered superconductor La[O(1-x)F(x)]FeAs (x = 0.05-0.12) with T(c) = 26 K. , 2008, Journal of the American Chemical Society.

[56]  G. Gu,et al.  Magnetoinfrared Spectroscopy of Landau Levels and Zeeman Splitting of Three-Dimensional Massless Dirac Fermions in ZrTe(5). , 2015, Physical review letters.

[57]  J. Karpinski,et al.  Doping dependence of the Nernst effect in Eu(Fe 1 − x Co x ) 2 As 2 : Departure from Dirac-fermion physics , 2011, 1102.3198.

[58]  Z. Fang,et al.  Measurement of the c-axis optical reflectance of AFe2As2 (A=Ba, Sr) single crystals: evidence of different mechanisms for the formation of two energy gaps. , 2010, Physical review letters.

[59]  D. Hsieh,et al.  A topological Dirac insulator in a quantum spin Hall phase , 2008, Nature.