The fractal nature of a diffusion front and the relation to percolation
暂无分享,去创建一个
Using a two dimensional simulation, a diffusion front is shown to have a fractal geometry in a range increasing with the diffusion length. The number of particles on the front, and the width measuring its spread, follow power laws as a function of the diffusion length. The associated exponents and the fractal dimension can be expressed as simple functions of the critical exponents of the two dimensional percolation problem On montre sur une simulation a deux dimensions qu'un front de diffusion possede une geometrie fractale sur une largeur dependant de la longueur de diffusion. Le nombre de particules sur le front, et la largeur mesurant son etalement, suivent des lois de puissance en fonction de la longueur de diffusion. Les exposants de ces lois et la dimension fractale peuvent etre ecrits simplement en fonction des exposants critiques de la percolation a deux dimensions
[1] D. Stauffer. Scaling Theory of Percolation Clusters , 1979, Complex Media and Percolation Theory.
[2] H. E. Stanley,et al. Site percolation threshold for honeycomb and square lattices , 1982 .
[3] Peter Fulde,et al. Theoretical models for superionic conductors , 1980 .
[4] L. Sander,et al. Diffusion-limited aggregation, a kinetic critical phenomenon , 1981 .
[5] R. Voss,et al. The fractal dimension of percolation cluster hulls , 1984 .