Perverse schobers and birational geometry

[1]  T. Wedhorn,et al.  Representable Functors , 2020, Springer Studium Mathematik - Master.

[2]  A. Harder,et al.  Perverse sheaves of categories and some applications , 2017, Advances in Mathematics.

[3]  M. Wemyss,et al.  Twists and braids for general 3-fold flops , 2015, Journal of the European Mathematical Society.

[4]  W. Donovan Perverse schobers and wall crossing , 2017, 1703.00592.

[5]  A. Bondal,et al.  Canonical tilting relative generators , 2017, 1701.08834.

[6]  M. Kapranov,et al.  Perverse sheaves over real hyperplane arrangements , 2014, 1403.5800.

[7]  R. Anno,et al.  Spherical DG-functors , 2013, 1309.5035.

[8]  M. Kapranov,et al.  Triangulated surfaces in triangulated categories , 2013, 1306.2545.

[9]  R. Bezrukavnikov,et al.  Affine braid group actions on derived categories of Springer resolutions , 2011, 1101.3702.

[10]  Gonçalo Tabuada Homotopy theory of dg categories via localizing pairs and Drinfeld's dg quotient , 2010 .

[11]  S. Riche Geometric braid group action on derived categories of coherent sheaves , 2008 .

[12]  R. Anno Spherical functors , 2007, 0711.4409.

[13]  Goncalo Tabuada Théorie homotopique des DG-catégories , 2007, 0710.4303.

[14]  R. Bezrukavnikov Noncommutative Counterparts of the Springer Resolution , 2006, math/0604445.

[15]  T. Bridgeland Derived categories of coherent sheaves , 2006, math/0602129.

[16]  W. Dwyer,et al.  Homotopy Limit Functors on Model Categories and Homotopical Categories , 2005 .

[17]  A. Kuznetsov Homological projective duality , 2005, math/0507292.

[18]  A. Kuznetsov Hyperplane sections and derived categories , 2005, math/0503700.

[19]  B. Toën The homotopy theory of dg-categories and derived Morita theory , 2004, math/0408337.

[20]  L. Manivel,et al.  Varieties of reductions for $gl\_n$ , 2004, math/0501329.

[21]  L. Manivel,et al.  Severi varieties and their varieties of reductions , 2003, math/0306328.

[22]  Y. Namikawa Mukai flops and derived categories II , 2003, math/0305086.

[23]  Philip S. Hirschhorn Model categories and their localizations , 2003 .

[24]  V. Drinfeld DG quotients of DG categories , 2002, math/0210114.

[25]  Paul E. Gunnells,et al.  Geometry of the tetrahedron space , 2002, math/0208119.

[26]  M. Bergh Three-dimensional flops and noncommutative rings , 2002, math/0207170.

[27]  M. Bergh,et al.  Generators and representability of functors in commutative and noncommutative geometry , 2002, math/0204218.

[28]  T. Bridgeland Flops and derived categories , 2000, math/0009053.

[29]  Paul E. Gunnells,et al.  A Smooth Space of Tetrahedra , 1999, math/9910049.

[30]  Y. Kawamata On the Cone of divisors of Calabi-Yau fiber spaces , 1997, alg-geom/9701006.

[31]  N. Chriss,et al.  Representation theory and complex geometry , 1997 .

[32]  P. Magyar,et al.  The Space of Triangles, Vanishing Theorems, and Combinatorics , 1996, alg-geom/9601022.

[33]  A.Bondal,et al.  Semiorthogonal decomposition for algebraic varieties , 1995, alg-geom/9506012.

[34]  M. Kapranov,et al.  ENHANCED TRIANGULATED CATEGORIES , 1991 .

[35]  Mikhail Kapranov,et al.  REPRESENTABLE FUNCTORS, SERRE FUNCTORS, AND MUTATIONS , 1990 .

[36]  W. Fulton,et al.  Intersection rings of spaces of triangles , 1989 .

[37]  Joel Roberts Old and new results about the triangle varieties , 1988 .

[38]  A. Beilinson How to glue perverse sheaves , 1987 .

[39]  Miles Reid,et al.  Young person''s guide to canonical singularities , 1985 .

[40]  A. Galligo,et al.  ${\mathcal {D}}$-modules et faisceaux pervers dont le support singulier est un croisement normal , 1985 .

[41]  M. Kashiwara,et al.  The invariant holonomic system on a semisimple Lie algebra , 1984 .

[42]  E. Brieskorn Die Auflösung der rationalen Singularitäten holomorpher Abbildungen , 1968 .

[43]  Robert Steinberg,et al.  Regular elements of semisimple algebraic groups , 1965 .

[44]  B. Kostant,et al.  Lie Group Representations on Polynomial Rings , 1963 .

[45]  J. G. Semple,et al.  The triangle as a geometric variable , 1954 .

[46]  H. Schubert Anzahlgeometrische Behandlung des Dreiecks , 1880 .